1. (10) Let \(f(x) = e^{x^3} + 4 \). Answer the following questions, in some cases the answer could be NONE or N/A.
 a. Sketch the graph
 b. Domain and Range
 c. \(x \) and \(y \) intercepts
 d. The equation of the horizontal and vertical asymptotes
 e. End behavior and behavior near vertical asymptotes.

2. (10) Find the domain of the following functions:
 a. \(h(x) = \sqrt{\frac{x^2 + 2x - 3}{x - 4}} \)
 b. \(f(x) = \ln x + \ln(2 - x) \)

3. (20) Solve the following equations.
 a. \(3xe^x + x^2e^x = 0 \)
 b. \(4 + 3\log(2x) = 16 \)
 Choose two out of the following three equations
 c. \(\sin 2x + \cos x = 0 \) in the interval \([0, 2\pi)\)
 d. \(2 \cos^2 x + \sin x = 1 \) in the interval \([0, 2\pi)\)
 e. \(\cos x + 1 = \sin x \) in the interval \([0, 2\pi)\)

4. (16) Find the exact value of the following trigonometric functions:
 a. \(\cos \left(\frac{25\pi}{4} \right) \)
 b. \(\sec(-13\pi) \)
 c. \(\sin 15^\circ \)
 d. \(\cos 10^\circ \cos 80^\circ - \sin 10^\circ \sin 80^\circ \)

5. (6) Find the amplitude, period, and phase shift. State the domain and range.
 \(y = \frac{3}{4} \cos(2x + \frac{2\pi}{3}) \)
6. (6) Find the period and graph the following function showing any important points and vertical asymptotes. State the domain and range.

\[y = \tan 2(x - \pi/4) \]

7. (9) Sketch a triangle to evaluate \(\cos \left(2 \tan^{-1}(3/2)\right)\)

8. (15) A tunnel is to be built through a mountain. To estimate the length of the tunnel, distance between A and B, a surveyor makes the following measurements: distance between A and C \(\approx 5\) km; distance between B and C \(\approx 4\) km; angle ACB=60°. Find the length of the tunnel.

9. (8) Choose either a or b and verify the equality.
 a. \[\cos^2 x - \sin^2 x = 2 \cos^2 x - 1 \]
 b. \[2 \tan x \sec x = \frac{1}{1 - \sin x} - \frac{1}{1 + \sin x} \]

EXTRA CREDIT

10. (10) Given the function \(f(x) = \tan(2x) \)
 a. State the domain so that \(f(x) \) is one-to-one.
 b. State its range.
 c. Find \(f^{-1}(x) \) and state its domain and range.