Skip to main content

Saint Louis University College of Arts and Sciences Header Logo Center

Menu Search

Dmitry Solenov, Ph.D.

Assistant Professor

Research Interests

Research Interests

Theoretical and Computational Condensed Matter Physics:

  • Quantum information and computing (superconducting systems, NV-diamond, quantum dots)
  • "All-surface" materials at nano- and meso-scale (phases, functionalization, transport)
  • Phase transitions and quantum phase transitions
  • Chiral magnetic ordering
  • Unconventional superconductivity

Publications and Media Placements

[42] M. Nikolo, J. Singleton, D. Solenov, J. Jiang, J. Weiss, and E. Hellstrom, Upper critical and irreversibility fields in Ba(Fe0.95Ni0.05)2As2 and Ba(Fe0.94Ni0.06)2As2 pnictide bulk superconductorsJ. Supercond. Nov. Magn. 30, 331 (2017). doi:10.1007/s10948-016-3726-5.

[41] M. Nikolo, J. Singleton, D. Solenov, J. Jiang, J. Weiss, and E. Hellstrom, Upper critical and irreversibility fields in Ba(Fe0.92Co0.08)2As2 and Ba(Fe0.92Co0.09)2As2 pnictide bulk superconductorsJ. Supercond. Nov. Magn. 30, 561 (2017). doi:10.1007/s10948-016-3727-4.

[40] T. Cavin, D. Solenov, Reduction of branching graphs supporting continuous time return quantum walksarXiv:1602.02446 [quant-ph].

[39] D. Solenov, Quantum gates via continuous time quantum walks in multiqubit systems with non-local auxiliary statesQuantum Information and Computation 17, 415 (2017); (arXiv:1512.06399 [quant-ph]).

[38] D. Solenov, Coherent modification of entanglement: benefits due to extended Hilbert spaceQuantum Information and Computation 16, 954 (2016); (arXiv:1511.08254 [quant-ph]).

[37] K. A. Velizhanin, N. Dandu, D. Solenov, Electromigration of bivalent functional groups on graphenePhys. Rev. B. 89, 155414 (2014).

[36] D. Solenov, S. E. Economou, T. L. Reinecke, Excitation spectrum as a resource for efficient two-qubit entangling gatesPhys. Rev. B. 89, 155404 (2014).

[35] D. Solenov, S. E. Economou, T. L. Reinecke, Two-qubit quantum gates for defect qubits in diamond and similar systemsPhys. Rev. B 88, 161403(R) (2013).

[34] D. Solenov, C. E. Junkermeier , T. L. Reinecke, K. A. Velizhanin, Tunable adsorbate-adsorbate interactions on graphenePhys. Rev. Lett. 111, 115502 (2013).

[33] C. E. Junkermeier, D. Solenov, T. L. Reinecke, Adsorption of NH2 on Graphene in the Presence of Other DefectsJ. Phys. Chem. C, 117, 2793 (2013).

[32] S. G. Carter, T. M. Sweeney, M. Kim, C. S. Kim, D. Solenov, S. E. Economou, T. L. Reinecke, L. Yang, A. S. Bracker, and D. Gammon, Quantum control of a spin qubit coupled to a photonic crystal cavityNature Photonics 7, 329 (2013); Interview: Flying qubit carrying a spin qubitNature Photonics 7, 336 (2013).

[31] D. Solenov, S. E. Economou, T. L. Reinecke, Fast two-qubit gates for quantum computing in semiconductor quantum dots using a photonic microcavityPhys. Rev. B 87, 035308 (2013).

[30] D. Solenov, K. A. Velizhanin, Adsorbate transport on graphene by electromigrationPhys. Rev. Lett. 109, 095504 (2012).

[29] A. Sykes, D. Solenov, D. Mozyrsky, Bloch-Redfield theory of high-temperature magnetic fluctuations in interacting spin systemsPhys. Rev. B 85, 174419 (2012).

[28] D. Solenov, D. Mozyrsky, I. Martin, Chirality waves in two-dimensional magnetsPhys. Rev. Lett. 108, 096403 (2012).

[27] D. Solenov, D. Mozyrsky, Cold atom qubitsJ. Comput. Theor. Nanosci. 8, 481 (2011).

[26] D. Solenov, D. Mozyrsky, Macroscopic two-state system in trapped atomic condensatesPhys. Rev. A 82, 061601(R) (2010).

[25] R. M. Kalas, D. Solenov, E. Timmermans, Reentrant stability of BEC standing wave patternsPhys. Rev. A 81, 053620 (2010).

[24] D. Solenov, D. Mozyrsky, Metastable states and macroscopic quantum tunneling in a cold atom Josephson ringPhys. Rev. Lett. 104, 150405 (2010).

[23] D. Solenov, I. Martin, D. Mozyrsky, Stability of odd-frequency superconducting statePhys. Rev. B 79, 132502 (2009).

[22] D. Solenov, D. Mozyrsky, Quantum nucleation and macroscopic quantum tunneling in cold-atom boson-fermion mixturesPhys. Rev. A 78, 053611 (2008).

[21] V. Privman, G. Strack, D. Solenov, M. Pita, E. Katz, Optimization of enzymatic biochemical logic for noise reduction and scalability: how many biocomputing gates can be interconnected in a circuit?J. Phys. Chem. B. 112, 11777 (2008).

[20] D. Solenov, D. Mozyrsky, Kinetics of phase separation transition in cold-atom boson-fermion mixturesPhys. Rev. Lett. 100, 150402 (2008).

[19] V. A. Burdov, D. Solenov, Dissipative regime of dynamic localization in double quantum dotInt. J. of Nanoscience 6, 389 (2007).

[18] D. Solenov, Unbalanced renormalization of tunneling in MOSFET-type structures in strong high-frequency electric fieldsPhys. Rev. B 76, 115309 (2007).

[17] D. Tolkunov, D. Solenov, Quantum phase transition in the multi-mode Dicke modelPhys. Rev. B 75, 024402 (2007).

[16] D. Solenov, D. Tolkunov, V. Privman, Exchange interaction, entanglement and quantum noise due to a thermal bosonic fieldPhys. Rev. B 75, 035134 (2007).

[15] V. Privman, D. Solenov, Coherence and entanglement in two-qubit dynamics: interplay of the induced exchange interaction and quantum noise due to thermal bosonic environmentProc. of SPIE 6573, 657303, (2007).

[14] D. Solenov, D. Tolkunov, V. Privman, Coherent interaction of spins induced by thermal bosonic environmentPhys. Lett. A 359, 81 (2006).

[13] L. Fedichkin, D. Solenov, C. Tamon, Mixing and decoherence in continuous-time quantum walks on cyclesJ. Quantum Inf. Comp. 6, 263 (2006).

[12] D. Solenov, L. Fedichkin, Non-unitary quantum walks on hyper-cyclesPhys. Rev. A 73, 012308 (2006).

[11] D. Solenov, V. Privman, Evaluation of decoherence for quantum computing architectures: qubit system subject to time-dependent controlInt. J. of Modern Physics B 20, 1476 (2006).

[10] D. Solenov, L. Fedichkin, Continuous-time quantum walks on a cycle graphPhys. Rev. A 73, 012313 (2006).

[9] V. Privman, D. Solenov, D. Tolkunov, Onset of entanglement and noise cross-correlations in two-qubit system interacting with common bosonic bathProc. Conf. ICSICT2006, 1054 (2006).

[8] V. Privman, D. Solenov, Decoherence of dynamically manipulated qubitsProc. Conf. IEEE-NANO 2006, vol. 2, 842, (IEEE Press, Monterey, CA, 2006).

[7] D. Solenov, V. A. Burdov, Nonlinear suppression of relaxation in dynamic localization phenomena in a double quantum dotPhys. Rev. B 72, 085347 (2005).

[6] V. A. Burdov, D. Solenov, Dynamical control of decoherence in double quantum dotProc. of 13th International Symposium “Nanostructures: Physics and Technology”, Ioffe Institute (2005).

[5] V. A. Burdov, D. S. Solenov, Dynamical control of electron states in double quantum dotPhysica E 24, 217 (2004).

[4] V. A. Burdov, D. S. Solenov, Dynamic control of electron states in a double quantum dot under weak dissipation conditionsJETP 98, 605 (2004).

[3] D. Solenov, V. Privman, Models of short-time qubit decoherenceProc. SPIE 5436, 172 (2004).

[2] V. A. Burdov, D. S. Solenov, Nonlinear response of electronic subsystem weakly coupled with resonator in double quantum dot to strong variable actionIzvestiya Akademii Nauk, Rossijskaya Akademiya Nauk, Seriya Fizicheskaya 68-1, 108 (2004).

[1] V. A. Burdov, D. S. Solenov, Controllable electron dynamics in a finite-size quantum well LatticePhys. Lett. A 305, 427 (2002).