David Wisbey, Ph.D.

Assistant Professor


Education

Ph.D. in Condensed Matter Physics, University of Nebraska-Lincoln
M.S. in Physics, University of Nebraska-Lincoln

Research Interests

  • Quantum computing
  • Microwave resonators and amplifiers
  • Solid state neutron detectors

Publications and Media Placements

Printed Archival Peer-Reviewed Journals
Vissers, M.R., Gao, J.S., Sandberg, M., Duff, S.M., Wisbey, D.S., Irwin, K.D., Pappas, D.P. “Proximity-coupled Ti/TiN multilayers for use in kinetic inductance detectors”, Appl. Phys. Lett. 102, 232603 (2013). DOI: 10.1063/1.4804286

Gao, J., Vissers, M.R., Sandberg, M.O., da Silva, M.C.S., Nam, S.W., Pappas, D.P., Wisbey, D.S., Langman, E.C., Meeker, S.R., Mazin, B.A., Leduc, H.G., Zmuidzinas, J., Irwin, K.D. “A titanium-nitride near-infrared kinetic inductance photon-counting detector and its anomalous electrodynamics”, Appl. Phys. Lett. 101, 142602 (2012). DOI: 10.1063/1.4756916

Sandberg, M., Vissers, M.R., Kline, J.S., Weides, M., Gao, J.S., Wisbey, D.S., Pappas, D.P. “Etch induced microwave losses in titanium nitride superconducting resonators”, Appl. Phys. Lett. 100, 26, 262605 (2012). DOI: 10.1063/1.4729623

Vissers, M.R., Kline, J.S. Gao, J.S., Wisbey, D.S., Pappas, D.P. “Reduced microwave loss in trenched superconducting coplanar waveguides”, Appl. Phys. Lett. 100, 082602 (2012). doi: 10.1063/1.3683552

Kline, J.S., Vissers, M.R., da Silva, M.S.C., Wisbey, D.S., Weides, M., Weir, T.J., Turek, B., Braje, D.A., Oliver, W.D., Shalibo, Y., Katz, N., Johnson, B.R., Ohki, T.A., Pappas, D.P., “Sub-micrometer epitaxial Josephson junctions for quantum circuits”, Superconduc. Sci. Tech. 25, 025005 (2012). doi: 10.1088/0953-2048/25/2/025005

Weides, M.P., Kline,J.S., Vissers, M.R., Sandberg, M.O., Wisbey, D.S., Johnson, B.R., Ohki, T.A., Pappas, D.P. “Coherence in transmon qubit with epitaxial tunnel junctions”, Appl. Phys. Lett. 99, 262502 (2011). doi: 10.1063/1.3672000

Pappas, D.P., Vissers, M.R., Wisbey, D.S., Kline, J.S., Gao, J.S. “Two Level System Loss in Superconducting Microwave Resonators”, IEEE Trans. Appl. Supercond. 21, 871 (2011). doi: 10.1109/TASC.2010.2097578

Vissers, M.R., Gao, J., Wisbey, D.S., Hite, D.A., Tsuei, C.C., Corcoles, A.D., Steffen, M., Pappas, D.P. “Low Loss Superconducting Titanium Nitride Coplanar Waveguide Resonators”, Appl. Phys. Lett. 97, 232509 (2010). doi: 10.1063/1.3517252

Wisbey, D.S., Gao, J., Vissers, M.R., Da Silva, F.C.S., Kline, J.S., Vale, L., Pappas, D.P. “Effect of metal/substrate interfaces on RF loss in superconducting coplanar waveguides”, J. Appl. Phys. 108, 093918 (2010). doi: 10.1063/1.3499608

Yuan, L., Wisbey, D.S., Halloran, S.T., Pappas, D.P., da Silva, F.C.S., Fardi, H.Z. “Magnetization scissoring in aluminum/Permalloy microstructures”, J. Appl. Phys. 106, 113919 (2009). doi: 10.1063/1.3264664

Wisbey, D.S., Wu, N., Feng, D., Caruso, A.N., Belot, J., Losovyj, Y.B., Vescovo, E., P. A. Dowben, “Induced Spin Polarization of Copper Spin ½ Molecular Layers”, Phys. Lett. A, 373, 484 (2009). doi: 10.1016/j.physleta.2008.11.055

Wisbey, D.S., Wu, N., Losovyj, Y., Ketsmana, I., Carusoc, A.N., Feng, D., Belot, J., Vescovo, E., Dowben, P.A. “Radiation Induced Decomposition of the Metal-Organic Molecule Bis(4-cyano- 2,2,6,6-tetramethyl-3,5-heptanedionato)copper(II)”, Appl. Surf. Sci. 255, 3576 (2009). doi: 10.1016/j.apsusc.2008.09.097

Wisbey, D.S., Wu, N., Feng, D., Caruso, A.N., Belot, J., Losovyj, Y., Vescovo, E., Dowben, P.A. “Interface-Induced Spin Dipole Ordering of the Copper Spin 1/2 Molecule: Bis(4-cyano-2,2,6,6-tetramethyl-3,5-heptanedionato)copper(II)” J. Phys. Chem. C 112, 13656 (2008). doi: 10.1021/jp804251b

Wu, N., Sabirianov, R.F., Duan, C.G., Mei, W.N., Wisbey, D.S., Ya. B. Losovyj, Manno, M., Leighton, C., En Cai, Zhang, Dowben, P.A., “The Surface Stability of CoS2(100)”, J. Phys: Condens. Matter 20, 215231 (2008). doi: 10.1088/0953-8984/20/21/215231

N. Wu, David Wisbey, T. Komesu, Z.X. Yu, M. Manno, L. Wang, C. Leighton, P.A. Dowben, “The kinetic energy dependent effective Debye temperature for CoS2 (100)”, Phys. Lett. A, 372, 2484 (2008). doi: 10.1016/j.physleta.2007.11.058

David Wisbey, D. Feng, M.T. Bremer, C.N. Borca, A.N. Caruso, C.M. Silvernail, J. Belot, E. Vescovo, “Electronic Structure of a Metal-Organic Copper Spin-1/2 Bis(4- cyano-2,2,6,6- tetramethyl-3,5-heptanedionato)copper(II)”, J. Am. Chem. Soc. 129, 6249 (2007). doi: 10.1021/ja069236e

Z.X. Yu, M.A. Van Hove, S.Y. Tong, David Wisbey, Ya.B. Losovyj, N. Wu, M. Manno, L. Wang, C. Leighton, W.N. Mei, P.A. Dowben, “The structure of the CoS2(100)-(1X1) surface”, J. Phys.: Condens. Matter 19, 156223 (2007). DOI: 10.1088/0953-8984/19/15/156223

N. Wu, Ya.B. Losovyj, David Wisbey, K. Belashchenko, M. Manno, L. Wang, C. Leighton, P.A. Dowben, “The Electronic Band Structure CoS2”, J. Phys.: Condens. Matter 19, 156224 (2007). doi: 10.1088/0953-8984/19/15/156224

D.Q. Feng, David Wisbey, Ya.B. Losovyj, Y. Tai, M. Zharnikov, P.A. Dowben, “Electronic structure and polymerization of a self-assembled monolayer with multiple arene rings”, Phys. Rev. B 74, 165425 (2006). doi: 10.1103/PhysRevB.74.165425

D.Q. Feng, David Wisbey, Y. Tai, Ya.B. Losovyj, M. Zharnikov, P.A. Dowben, “Abnormal Temperature Dependence of Photoemission Intensity Mediated by Thermally Driven Reorientation of a Monomolecular Film”, J. Phys. Chem. B 110, 1095 (2006). doi: 10.1021/jp0566616

H.-J. Jeong, R. Skomski, David Wisbey, P.A. Dowben, “Magnon-plasmon interactions”, Phys. Lett. A 341, 508 (2005). doi: 10.1016/j.physleta.2005.04.073

Ya.B. Losovyj, I.N. Yakovkin, H.-J. Jeong, David Wisbey, P.A. Dowben, “Lattice stiffening transition in gadolinium chains in furrowed (112) surfaces”, J. Phys.: Condens. Matter 16, 4711 (2004). doi: 10.1088/0953-8984/16/26/006

Ya.B. Losovyj, David Wisbey, P.A. Dowben, “The photoemission from the gadolinium submonolayers on W(112)”, Synchrotron Radiation in Natural Science 3, N1-2, 76 (2004).

Community Work

Wisbey recently completed a postdoctoral fellowship at the National Institute of Standards and Technology in Boulder, Colorado before becoming an assistant professor at Saint Louis University. Currently,  Wisbey is in the process of completing his lab which will include an adiabatic demagnetization refrigerator (ADR) and sputter deposition system. This will allow Wisbey to explore new dielectric materials and metals for use in superconducting circuits.