Modeling Dynamic Vehicle Routing Problems: A Literature Review and Framework

Marlin W. Ulmer *, Justin C. Goodson 2, Dirk C. Mattfeld 1, and Barrett W. Thomas 3

1 Technische Universität Braunschweig, Carl-Friedrich-Gauß-Fakultät, Mühlenpförtschstraße 23, 38106 Braunschweig, Germany
2 Saint Louis University, Richard A. Chaifetz School of Business, 3674 Lindell Blvd, St. Louis, MO 63108, United States
3 University of Iowa, Tippie College of Business, 108 John Pappajohn Business Building, Iowa City, IA 52242, United States

Abstract

We present a literature review of and modeling framework for dynamic vehicle routing problems (DVRPs). Our review yields two key findings. First, DVRP papers often lack models of the underlying stochastic and dynamic problems that they study. Second, the overwhelming majority of DVRP solution methods employ route plans, a potential course of action to follow for future decision-making, e.g., a path through a set of realized service requests or a customer sequence coupled with various quantities required to implement heuristic decision-making methods. Essentially, the DVRP literature lacks models that connect real-world applications with solution methods. To bridge this gap, we introduce a route-based MDP model that extends the conventional MDP model for dynamic and stochastic optimization problems by redefining the conventional action space to operate on route plans. Under an easily satisfiable condition, we show route-based MDPs are equivalent to the conventional MDP model. We anticipate route-based MDPs will facilitate more scientific rigor in DVRP studies, provide researchers with a common modeling language, allow for better inquiry, and improve classification and description of solution methods. Using examples from the literature, we illustrate the value of connecting application and solution methodology via route-based MDPs.

Keywords: dynamic programming, dynamic vehicle routing, literature review, modeling, Markov decision process

*Corresponding Author, Email: m.ulmer@tu-braunschweig.de
1 Introduction

Dynamic vehicle routing problems (DVRPs) are problems in which a set of geographically dispersed customers is visited by one or more travelers or vehicles. The problems are dynamic because information stochastically changes over the operating horizon and there exist opportunities to make decisions in response to the revealed information. For example, a ride-sharing service may dynamically assign vehicles to customer requests, a delivery truck may adjust its route in response to changing traffic conditions, or appointments may be rescheduled on-the-fly to compensate for uncertain service times. While dynamic vehicle routing has a 30-year history in the operations research literature, the majority of DVRP work is recent. For example, more than half of the papers in our literature review have been published since 2010. Further, the 2013-14 most cited paper in the *European Journal of Operational Research* reviewed dynamic vehicle routing (Pillac et al. 2013), indicating high interest in the topic among researchers. The trend in DVRP research is likely to accelerate as opportunities afforded by data availability and computing power enable the integration of predictive tools with prescriptive optimization methods to anticipate and dynamically respond to uncertain events. Savelsbergh and Van Woensel (2016) suggest taking advantage of these opportunities “may necessitate new views, paradigms, and models for decision support.” Further, Speranza (2018) indicates a major obstacle for researchers addressing DVRPs is “the importance of appropriately modeling dynamic events and simultaneously incorporating information about the uncertainty of future events.” Moreover, in the context of general dynamic optimization, Powell (2019) notes that “modeling sequential decision problems is often the most difficult task,” a sentiment we find to be particularly salient for DVRPs.

Suitable optimization models are the key to addressing the challenges and opportunities surrounding DVRPs. In operations research, mathematical modeling plays a dual role as the intermediary between real-world applications and solution methods. The first role of a model is to capture the essence of the decision-making task in the form of objective, constraints, and decision variables. Modeling begins with a description, but should go further: “Mathematical models have many advantages over a verbal description of the problem. One advantage is that a mathematical model describes a problem much more concisely. This tends to make the overall structure of the problem more comprehensible... [and] facilitates dealing with the problem in its entirety and con-
sidering all its interrelationships simultaneously” (Hillier and Lieberman 2001, p. 11). The second role of a model is to inform the design of solution methods: “... a mathematical model forms a bridge to the use of high-powered mathematical techniques and computers to analyze the problem” (Hillier and Lieberman 2001, p. 12). A classical example of synergy between model and solution method is set partitioning and column generation. Though multiple integer programming formulations may accurately represent an application and yield equivalent optimal solutions, models with large numbers of decision variables facilitate decomposition methods that offload difficult portions of the optimization to a subproblem and rely on general branch-and-bound techniques to solve a master problem. When properly positioned between problem and solution approach, DVRP models will allow researchers to connect applications with methods, unambiguously defining problems as well as driving solution development.

Despite the undebated importance of modeling among operations researchers, the extant DVRP literature experiences difficulty identifying models that bridge application with solution method. A significant challenge in DVRP research is transformation of the problem description into something unambiguous and convenient for analysis. In particular, DVRP papers often struggle to formally express the sequential decision-making, intricate uncertainties, and plan-based characteristics of many dynamic vehicle routing applications. The result is a disparate body of literature, research studies claiming to address similar applications, but which are difficult to compare and contrast because the ambiguities of problem description are not resolved by a mathematical model. Further, the Markov decision process (MDP) models used by some authors are often dissimilar to the route-based solution methods employed in their work and in much of the extant literature. In these MDPs, the decision variable, or policy, typically directs the decision maker in the moment, but provides little guidance on future actions. Because route-based methods outline decisions now and potential decisions in the future, state-of-the-art DVRP solution techniques and conventional MDP models are often incongruent. The cartoon in Figure 1a illustrates the predicament: the conventional MDP model provides a loose connection between DVRP applications and route-based methods, typically preventing intuition from playing a role in model development.

In this paper, we propose a modeling framework that connects dynamic vehicle routing applications and their solution approaches. We construct route-based MDPs by redefining the conventional MDP action space to operate on sets of planned routes, or route plans. We define a route
plan as a potential course of action to follow for future decision-making, e.g., a path through a set of realized service requests or a customer sequence coupled with various quantities required to implement heuristic decision-making procedures. The modification leads to a generalization of the conventional MDP state to include route plans and to a definition of the current-period reward or cost to be the marginal change in value associated with a route plan update. Though conventional MDPs fill the first role of a model, our route-based MDPs offer improvements by also connecting with state-of-the-art methods, the second role of a model, thereby providing the framework necessary for improved analysis of important and challenging problems. Figure 1b graphically depicts the benefit: route-based MDPs facilitate more intuitive modeling by bridging application with method.

In addition to strengthening the role of models in routing research, we anticipate route-based MDPs will facilitate more scientific rigor in DVRP studies. As a unified modeling framework, route-based MDPs will allow researchers to express their problems in a common language, thereby facilitating inquiry by better identifying contrasts with existing work and opportunities to derive new insights from the extant literature. Additionally, as a standard model for DVRPs, we further anticipate route-based MDPs will facilitate better classification and description of solution methods – how plans are formulated, generated, evaluated, impacted by information, etc.

To develop the framework, we completed the following steps:

1. **Literature Review:** We analyze the existing literature on stochastic and dynamic vehicle
routing for two reasons. First, we justify the need for a modeling framework by highlighting the lack of modeling in most papers. Second, we identify properties of applications and methodology in the literature to derive structural components of a suitable modeling framework. Namely, we highlight that route plans are a dominating feature in nearly all papers.

2. **Framework:** We develop our framework in the context of an existing modeling approach. Specifically, we generalize, replace, or extend existing elements of the conventional Markov decision process to the needs of route-based problems and methodology. We then prove that the functionality of our proposed framework is equivalent to the conventional MDP.

3. **Proof of Concept:** Finally, we present justification that our modeling framework is tailored to the challenges of modeling dynamic and stochastic routing problems. In addition to the empirical evidence of the literature review, as a proof of concept, we consider a specific dynamic and stochastic vehicle routing problem that is based on a complex business problem. For this dynamic pickup and delivery problem, the conventional MDP is incomprehensible and lacks connections to both the business problem and the applied methodology. We show that our modeling framework intuitively establishes these connections.

We emphasize that the focus of the paper is not computational. Indeed, as we will show, the literature is replete with sophisticated DVRP procedures. Rather, we propose a modeling framework that connects these existing methods to the problems they seek to solve. We acknowledge that our route-based MDP increases model dimensionality relative to the conventional MDP. However, for most DVRPs of practical interest, methods to identify an optimal policy are computationally intractable. Thus, whether addressed in the conventional or route-based framework, these DVRPs require the heuristic solution procedures that dominate the literature. Our work fills the gap between current methods and the conventional model, allowing researchers to seamlessly define problems and frame solution approaches.

We make four contributions:

- Our paper is the first to present an MDP modeling framework based on traditional routing plans, connecting the problem model to both the routing application and to state-of-the-art solution methods.
• In contrast to existing DVRP literature surveys, which largely classify DVRP research via problem characteristics (e.g., the degree of stochasticity and operational constraints), our review compares and contrasts modeling techniques and solution methods.

• We prove the equivalence of conventional and route-based MDPs, thus establishing a theoretical basis for combining route-based optimization with dynamic and stochastic modeling.

• Using DVRPs from the literature, we demonstrate how route-based MDP formulations more closely align problem models with state-of-the-art solution approaches.

The remainder of the paper is outlined as follows. In §2, we graphically illustrate the difference between conventional and route-based MDP models. In §3, we survey the DVRP literature. In §4 and §5, we formalize conventional and route-based MDP models, respectively, providing examples throughout. In §6, we show the value of an optimal route-based MDP policy is equivalent to the value of an optimal policy in the conventional MDP model. In §7, we present a route-based MDP model for a challenging DVRP from the literature with the aim of demonstrating the generality of the proposed model. We provide concluding remarks in §8.

2 Motivating Example

To prepare the reader for our literature review and modeling framework, we illustrate the concepts of route plans and sequential decision models via the vehicle routing problem with stochastic service requests (VRPSSR), a problem considered frequently in the DVRP literature (Gendreau et al. 1999, Bent and Van Hentenryck 2004, Mitrović-Minić and Laporte 2004, Thomas and White III 2004, Hvattum et al. 2006, Ichoua et al. 2006, Thomas 2007, Ghiani et al. 2009, 2012, Ferrucci et al. 2013, Ulmer et al. 2018). In §2.1, we illustrate how route plans often inform VRPSSR decision-making. In §2.2, we show how a conventional MDP models the stochasticity and dynamism of the problem, but lacks route-based intuition. Finally, in §2.3, we highlight the potential for a route-based MDP model to bridge application with method. In subsequent sections, we continue use of the VRPSSR as an illustrative example to formalize conventional and route-based MDP models.
Our VRPSSR variant is characterized by the need to dynamically route one uncapacitated vehicle to meet service calls arriving randomly over a working day of duration T and from a set of potential customers. We denote the known customer locations by the set $N = \{0, 1, \ldots, N\}$, where 0 represents a depot and the remaining locations represent customers. Although the location of each customer in N is known, whether or not a customer requests service is uncertain. The known travel time between two locations n and n' in N is denoted $d(n, n')$. Each customer served accrues a unit reward and the objective is to maximize total expected reward, the expected number of serviced customers.

2.1 Decision State and Route Plan

Figure 2 illustrates a VRPSSR decision state and route plan. We consider a situation with nine known customers, depicted as 1 through 9 in each of the two panels of Figure 2. The left-most panel shows a state of the problem at a point in time at which a decision must be made. At time $t = 20$, the vehicle has just serviced Customer 4 at its current location, Customers 8 and 9 have not requested service, Customers 2, 3, 5, 6, and 7 have requested service but have not yet been visited, and Customer 1 has already received service. The state comprises all information necessary to make a decision – time, vehicle location, and customer statuses. Given the information in the current state, we must route the vehicle to another location.

A common decision-making technique in the VRPSSR literature is to direct immediate vehicle
movement by constructing a route plan, in this case a sequence of visits comprising the customer to visit next as well as potential future visits. In the center panel of Figure 2, a route plan commits the vehicle to next visit Customer 2, a movement we label as $x_k = 2$ and denote by the solid line connecting the current vehicle location to Customer 2. Denoted by dashed lines, the route plan suggests future visits to Customers 7, 6, and 5, followed by a return to the depot. Though the route plan suggests a sequence of actions, due to the stochastic and dynamic nature of the VRPSSR, only the first action is implemented. As is common in the VRPSSR literature, at subsequent decision states, the route plan may be updated in response to new information.

A model for the VRPSSR should incorporate the concepts of sequential states and route plans. We first consider an MDP, the standard framework to model sequences of states, decisions, and realizations of exogenous information. We demonstrate that a conventional MDP model captures the dynamism and stochasticity of the problem, but is disjoint from state-of-the-art solution methods.

2.2 Conventional MDP

Figure 3 illustrates a conventional MDP model for the VRPSSR. The left-most panel displays the same decision state s_k given in the left panel of Figure 2. With the information given in the state, we make a decision, which in the conventional MDP for the VRPSSR directs only immediate vehicle movement. As in Figure 2, we choose to travel to Customer 2. We assume the vehicle traverses a Manhattan-style grid where each edge requires 10 time units. We illustrate arrival of the vehicle to Customer 2 at time 40 in the right-hand-side panel of Figure 3. At this time, we also observe any new requests, the random information ω_{k+1}, occurring between the departure from Customer 4 at time 20 and the arrival to Customer 2 at time 40. At this point, we have a new state s_{k+1} with the vehicle located at Customer 2, Customer 4 has now been serviced, and Customer 8 has just requested service but has not yet been visited. Customers 3, 5, 6, and 7 have also requested service but have not yet been visited and Customer 1 has already received service.

2.3 Route-based MDP

Figure 3 reveals a gap between the problem formulation and the methods most practitioners – as well as almost all approaches in the literature – employ to solve the VRPSSR. Notably, Fig-
Figure 3 does not present a route through known customers, even a planned route that might later be modified. With this motivation, our route-based MDP merges the concept of route plans with the conventional MDP model.

Figure 4 illustrates a route-based MDP model for the VRPSSR. The three panels of Figure 4 are analogous to those of Figure 3, but incorporate the notion of a route plan. The left-most panel of Figure 4 shows the same situation at time 20 as displayed in Figure 3. However, it also illustrates a planned route we associate with the state and action of the route-based MDP model. In a current state s_k, the route plan is typically the route plan selected in the previous decision epoch, less the portion that was implemented. The route plan in this example proposes travel from the vehicle’s current location at Customer 4 to Customer 3, then to Customer 5, and back to the depot. The decision is to either update the current route plan or determine a new route plan. In this example, the route plan is updated to the same route plan presented in Figure 2, thus committing the vehicle to visit Customer 2, an action we denote by the solid line from the vehicle’s current location to Customer 2. While Customer 9 has not yet requested service, we note the updated planned route puts the vehicle in a position to serve Customer 9 if the opportunity arises. Finally, the panel on the right-hand side of Figure 4 shows the state of the route-based MDP at time 40 when the vehicle arrives at Customer 2. At this point, Customer 8 has requested service and the planned route is updated to reflect the vehicle’s location.

In both Figures 3 and 4, the immediate action, that of traveling to Customer 2, is the same.
However, Figure 4 combines the action with a route plan, thus providing a stronger connection to the solution methods predominate in the literature. Further, as demonstrated by the route plan and Customer 9 in Figure 4, route plans can be an indicator of the potential impact of future realizations of exogenous information, thus enhancing synergies between model and method.

3 Literature Review

Building on the illustrative example of §2, in this section we formally examine the DVRP literature. Drawing on papers from the reviews of Psaraftis et al. (2016) and Ulmer (2017) as well as from recent publications, we focus largely on modeling choices and solution methods. In particular, we show many DVRP research papers lack dynamic and stochastic models and the overwhelming majority of methods rely on route plans, thus highlighting the need for a framework connecting state-of-the-art routing methods with optimization models.

Table 1 summarizes our analysis. A checkmark in the “Model” column indicates the paper presents a scientific model of the problem, one capturing the dynamic and stochastic aspects of the DVRP the paper addresses. The “Solution Method” column identifies the predominate methodology employed in the paper – reoptimization (RO), policy function approximation (PFA), lookahead algorithm (LA), and value function approximation (VFA). Our methodology types mirror the four policy classes of Powell (2011), ranging from myopic procedures (RO) to methods that implic-
itly (PFA) and explicitly (LA and VFA) anticipate uncertainties and dynamics. A checkmark in the “Route Plan” column indicates the methodology employs route plans. Below we discuss each dimension of Table 1.

Table 1: Dynamic Vehicle Routing Literature

<table>
<thead>
<tr>
<th>Paper</th>
<th>Model</th>
<th>Solution Method</th>
<th>Route Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psaraftis (1980)</td>
<td>-</td>
<td>RO</td>
<td>✓</td>
</tr>
<tr>
<td>Bertsimas and Van Ryzin (1991)</td>
<td>-</td>
<td>PFA</td>
<td>✓</td>
</tr>
<tr>
<td>Papastavrou (1996)</td>
<td>-</td>
<td>PFA</td>
<td>✓</td>
</tr>
<tr>
<td>Tassiulas (1996)</td>
<td>-</td>
<td>PFA</td>
<td>✓</td>
</tr>
<tr>
<td>Savelsbergh and Sol (1998)</td>
<td>-</td>
<td>PFA</td>
<td>✓</td>
</tr>
<tr>
<td>Gendreau et al. (1999)</td>
<td>-</td>
<td>RO</td>
<td>✓</td>
</tr>
<tr>
<td>Swihart and Papastavrou (1999)</td>
<td>-</td>
<td>PFA</td>
<td>✓</td>
</tr>
<tr>
<td>Ichoua et al. (2000)</td>
<td>-</td>
<td>RO</td>
<td>✓</td>
</tr>
<tr>
<td>Secomandi (2000)</td>
<td>✓</td>
<td>VFA, LA</td>
<td>✓</td>
</tr>
<tr>
<td>Secomandi (2001)</td>
<td>✓</td>
<td>LA</td>
<td>✓</td>
</tr>
<tr>
<td>Larsen et al. (2002)</td>
<td>-</td>
<td>PFA</td>
<td>✓</td>
</tr>
<tr>
<td>Mitrović-Minić and Laporte (2004)</td>
<td>-</td>
<td>PFA</td>
<td>✓</td>
</tr>
<tr>
<td>Thomas and White III (2004)</td>
<td>✓</td>
<td>LA</td>
<td>✓</td>
</tr>
<tr>
<td>Bent and Van Hentenryck (2004)</td>
<td>-</td>
<td>LA</td>
<td>✓</td>
</tr>
<tr>
<td>Van Hemert and La Poutré (2004)</td>
<td>-</td>
<td>PFA</td>
<td>✓</td>
</tr>
<tr>
<td>Ichoua et al. (2006)</td>
<td>✓</td>
<td>PFA</td>
<td>✓</td>
</tr>
<tr>
<td>Gendreau et al. (2006)</td>
<td>-</td>
<td>RO</td>
<td>✓</td>
</tr>
<tr>
<td>Hvattum et al. (2006)</td>
<td>-</td>
<td>LA</td>
<td>✓</td>
</tr>
<tr>
<td>Chen and Xu (2006)</td>
<td>-</td>
<td>RO</td>
<td>✓</td>
</tr>
<tr>
<td>Huisman and Wagelmans (2006)</td>
<td>-</td>
<td>LA</td>
<td>✓</td>
</tr>
<tr>
<td>Fabri and Recht (2006)</td>
<td>-</td>
<td>RO</td>
<td>✓</td>
</tr>
<tr>
<td>Thomas (2007)</td>
<td>✓</td>
<td>PFA</td>
<td>✓</td>
</tr>
<tr>
<td>Bent and Van Hentenryck (2007)</td>
<td>-</td>
<td>LA</td>
<td>✓</td>
</tr>
<tr>
<td>Hvattum et al. (2007)</td>
<td>-</td>
<td>LA</td>
<td>✓</td>
</tr>
<tr>
<td>Sáez et al. (2008)</td>
<td>✓</td>
<td>LA</td>
<td>✓</td>
</tr>
<tr>
<td>Pureza and Laporte (2008)</td>
<td>-</td>
<td>PFA</td>
<td>✓</td>
</tr>
<tr>
<td>Novoa and Storer (2009)</td>
<td>✓</td>
<td>LA</td>
<td>✓</td>
</tr>
<tr>
<td>Secomandi and Margot (2009)</td>
<td>✓</td>
<td>LA</td>
<td>-</td>
</tr>
<tr>
<td>Ghiani et al. (2009)</td>
<td>-</td>
<td>LA</td>
<td>✓</td>
</tr>
<tr>
<td>Angelelli et al. (2009)</td>
<td>-</td>
<td>PFA</td>
<td>✓</td>
</tr>
<tr>
<td>Cortes et al. (2009)</td>
<td>✓</td>
<td>LA</td>
<td>✓</td>
</tr>
<tr>
<td>Maxwell et al. (2010)</td>
<td>✓</td>
<td>VFA</td>
<td>-</td>
</tr>
<tr>
<td>Mes et al. (2010)</td>
<td>-</td>
<td>VFA</td>
<td>✓</td>
</tr>
<tr>
<td>Meisel (2011)</td>
<td>✓</td>
<td>VFA</td>
<td>✓</td>
</tr>
<tr>
<td>Schmid (2012)</td>
<td>✓</td>
<td>VFA</td>
<td>-</td>
</tr>
<tr>
<td>Ghiani et al. (2012)</td>
<td>✓</td>
<td>LA</td>
<td>✓</td>
</tr>
<tr>
<td>Azi et al. (2012)</td>
<td>-</td>
<td>LA</td>
<td>✓</td>
</tr>
</tbody>
</table>
3.1 Modeling

A striking finding of our analysis is the number of papers – 42 of 66 – without a scientific model capturing the stochastic and dynamic elements of the problem. Among such papers, it is common to find a detailed problem description. However, the mathematical formalism almost always contained in static routing research is not present.

Though papers with scientific models differ in their terminologies – e.g., from Markov decision processes (Maxwell et al. 2010), to model predictive control (Sáez et al. 2008), to dynamic programming (Ichoua et al. 2006) – there are common themes. For example, all papers with a checkmark in the “Model” column utilize the concepts of states, decisions, and transitions to for-
malize the sequence of decision making and information evolution. States often describe vehicle positions and customers to serve, decisions typically depict vehicle movement, and transitions update the state following decision selection and a realization of uncertainty, such as demand or travel time. Further, these papers present solutions as policies, functions mapping states to decisions. The common modeling themes across the literature are most often cast formally as MDPs, in part motivating our embrace of MDPs as a base model for DVRP optimization.

3.2 Solution Methods

Another notable finding of our analysis is that 61 of 66 papers utilize route plans in their solution methodology. Below, we discuss the four primary techniques in these papers guiding the use of route plans to identify DVRP solutions.

Decision-making in early DVRP research relies on RO methods, rolling horizon procedures to select route plans at each epoch via a static routing problem. Typically solved via math programming or metaheuristic techniques, the static problem often encompasses known information and gives little or no consideration to future uncertainties. For example, the pioneering work of Gendreau et al. (1999) employs a tabu search procedure whenever a service request is made, at each decision epoch seeking a travel-time-minimizing route plan through known customer locations, but ignoring potential future requests. Even though such methods do not anticipate future uncertainties and dynamics in route plan development, RO remains common in recent literature, particularly in rich routing problems with large numbers of operational constraints. In these problems, identifying feasible route plans can be challenging, thus anticipating future uncertainties often becomes secondary to managing known information. For example, Schyns (2015) considers the problem of dynamically routing refueling trucks at an airport. The fleet is heterogeneous in skills and capacities, split deliveries are permitted, and aircraft service time windows change stochastically over the planning horizon. Similar to the method of Gendreau et al. (1999), the ant colony approach of Schyns (2015) is executed whenever an uncertainty is realized and seeks to minimize response times given known time window values, but without considering future time window uncertainties. As we illustrate in subsequent sections, our route-based MDP connects RO methods with an optimization model.

PFA methods represent first steps away from myopic selection of route plans toward antici-
pation of future uncertainties. PFAs often consist of decision rules designed to mimic “common sense” route plans. For example, consider the work of Mitrović-Minić and Laporte (2004), which develops methods for a dynamic pickup and delivery problem where customer requests arrive randomly over a service horizon. As part of their solution method, Mitrović-Minić and Laporte (2004) design waiting strategies, rules dictating where and how long a vehicle should delay travel. Though the waiting strategies do not explicitly incorporate when and where origin-destination requests might be realized, the strategies do design route plans passing through various geographic zones, implicitly considering service to known requests as well as to future requests in certain service areas and at particular times. Similarly, Van Hemert and La Poutré (2004) favor route plans with flexibility to incorporate future requests, but do not explicitly consider unrealized customers in decision-making. Our route-based MDP model provides a framework to join PFA-style rules with route plans.

Leveraging recent increases in computing power, LA methods give explicit consideration to stochasticity and dynamics, often drawing on samples of future uncertainties to generate and evaluate route plans. For instance, the route-based solution methodology of Ghiani et al. (2009) estimates time window violations across a route plan by simulating future customer requests. Explicit anticipation of when and where service requests might be realized favors route plans less likely to visit customers outside of desired service windows. A particularly popular type of LA, MSAs (Bent and Van Hentenryck 2004) generate a set of scenarios representing future uncertainties, develop a route plan for each scenario, then employ a consensus function to select a distinguished route plan to guide decision-making in the current period. In §7, we discuss in-depth how the LA method of Schilde et al. (2014) for a dynamic dial-a-ride problem can be strongly connected to its application via a route-based MDP model.

Similar to LAs, VFAs explicitly anticipate future events, but do so via an approximation of the dynamic programming value function that considers both the immediate and future impact of a decision made now. In particular, VFAs typically make a functional approximation of Bellman’s reward-to-go. For example, for a DVRP with stochastic customer requests, Ulmer et al. (2018) approximate the future value of a routing decision via a non-parametric function of current time and slack, the latter a measure of a route plan’s capacity to accommodate service requests not yet realized. In the analysis of §6, we connect the value functions of a conventional MDP with those
of a route-based MDP, thus establishing an analytical basis for future research in route-based VFA methods.

3.3 Route Plans

In addition to a high frequency of route-based solution methodologies, our analysis of the DVRP literature observes a broad range of what qualifies as a route plan. For example, in the DVRP with stochastic customers addressed by Gendreau et al. (1999), a route plan is a path through a set of realized service requests, a fundamental concept stemming from the static routing literature. In contrast, for the traveling purchaser problem studied by Angelelli et al. (2016), the authors incorporate into a route plan not only a customer sequence, but various quantities required to characterize supply and demand uncertainties as well as to implement potential heuristic decision-making procedures. Our route-based MDP model defines a route plan quite generally as a potential course of action to follow for future decision-making. We demonstrate the flexibility in our concept of a route plan via a basic example in §5 and a more complex depiction in §7.

Though the majority of DVRP papers in our analysis utilize route plans in their solution methodologies, it is instructive to examine works that do not. For example, to dynamically dispatch and relocate ambulances, Schmid (2012) develops a VFA based on state-space aggregation, but without explicitly referencing potential vehicle movements beyond those available in the current period. Additionally, Secomandi and Margot (2009) employ standard backward dynamic programming techniques over a subset of states, heuristically selected via a lookahead mechanism, neither method requiring consultation of a route plan to dynamically direct a vehicle in response to stochastic customer demands.

More generally, it is notable that most papers in Table 1 lacking a checkmark in the “Route Plan” column contain a checkmark in the “Model” column and vice-versa. We feel this trend reflects the rich history of research focusing on deterministic routing problems. Thus, it is natural researchers would seek to connect existing technology with emerging dynamic problems. Recognizing models need to keep pace with the latest advances, our work provides researchers with a rigorous model connecting DVRP applications to state-of-the-art routing methods.

4 Conventional MDP Model

In this section, we review the conventional MDP model and give an example for the VRPSSR to prepare our route-based MDP. The notation presented in this section is used as the basis for the route-based MDP formulation in the following section. More detailed introductions to MDPs can be found in Puterman (2005) and Powell (2011).

4.1 Model

Conventional MDP models are characterized by six model elements:

Decision Epochs Points in time at which decisions are made.

State A tuple containing all information necessary to define the feasible actions at a particular decision epoch, the reward for choosing an action, and the resulting transition.

Actions Feasible decisions available for a particular state, also referred to as decisions.

Reward The quantity earned by choosing a particular action in a particular state.

Transition A function describing how the system evolves given a chosen action in a particular state. Transitions may involve exogenous information, notably the realization of random variables.

Objective A function of the rewards, typically maximization of the expected sum of rewards across all decision epochs.

Throughout the paper we refer to rewards. However, for minimization problems, rewards would more naturally be referred to as costs and the typical objective would minimize the expected sum of costs across all decision epochs.

We assume a finite horizon in which decisions are made at epochs $0, 1, \ldots, K$, where K may be a random variable. At the k^{th} decision epoch, the system occupies state s_k in state space S. A state contains the minimum amount of information necessary to determine the actions, current-period rewards, and transition probabilities if known. At epoch k and given state s_k, the decision maker chooses an action x_k from the set of feasible decisions $\mathcal{X}(s_k)$. Choosing action x_k when
in state \(s_k \) induces a state transition from state \(s_k \) to state \(s_{k+1} \) in decision epoch \(k + 1 \). The transition is random and determined by selected decision \(x_k \) and the set of random variables \(\Omega_{k+1} \) representing the random information arriving between decision epochs \(k \) and \(k + 1 \). We denote a realization of \(\Omega_{k+1} \) as \(\omega_{k+1} \). As discussed in Powell (2011), the transition can be split into two parts – a transition from pre-decision state \(s_k \) to post-decision state \(s^x_k \) and a transition from \(s^x_k \) to pre-decision state \(s_{k+1} \). The deterministic transition for the pre- to post-decision state is given by the function \(S^X(s_k, x_k) \) and the random transition to the next pre-decision state is given by the function \(S^\Omega(s^x_k, \omega_{k+1}) \). Thus, \(s_{k+1} = S(s_k, x_k, \omega_{k+1}) = S^\Omega(S^X(s_k, x_k), \omega_{k+1}) \). These transitions are seen in Figures 3 and 4 in which the left-most panels illustrate pre-decision states, the middle panels post-decision states, and the right-most panels subsequent pre-decision states.

Let \(\hat{R}_{k+1}(s_k, x_k, \omega_{k+1}) \) be the random reward earned at decision epoch \(k \) when selecting decision \(x_k \) in state \(s_k \) and observing random information \(\omega_{k+1} \). Because \(\omega_{k+1} \) may not be realized when selecting decision \(x_k \), we define the reward in decision epoch \(k \) as the expected reward \(R_k(s_k, x_k) = \mathbb{E}[\hat{R}_k(s_k, x_k, \Omega_{k+1}) \mid s_k, x_k] \), where \(\mathbb{E}[\cdot] \) denotes the expectation operator (in this case with respect to \(\Omega_{k+1} \)).

Let \(\pi \) be a function mapping a state to an action and \(\Pi \) the set of all such functions. Then, the objective is to maximize the total expected reward, conditional on initial state \(s_0 \), given as \(\max_{\pi \in \Pi} \mathbb{E} \left[\sum_{k=0}^{K} R_k(s_k, x^{\pi}(s_k)) \mid s_0 \right] \), where \(x^{\pi}(s_k) \) is the action prescribed by policy \(\pi \) for state \(s_k \). Discounting can be incorporated into the reward function, but we omit discount factors to simplify notation.

4.2 Conventional MDP Model for the VRPSSR

In this section, we formalize the content of §2.2 by presenting a conventional MDP model of the VRPSSR. Serving as an example of a classically-formulated DVRP, the model facilitates comparison of the conventional and route-based formulations. Importantly, the example demonstrates a correct model for the VRPSSR does not require ongoing knowledge of a planned route. Additional examples of conventional MDP formulations for DVRPs can be found in Thomas and White III (2004), Ichoua et al. (2006), Secomandi and Margot (2009), Goodson et al. (2016), and Ulmer et al. (2018).
Decision Epochs

A decision epoch begins when the vehicle arrives at a location and observes new customer requests.

States

The state of the system at decision epoch k is the tuple $s_k = (n_k, t_k, z_k)$, where n_k in \mathcal{N} is the vehicle’s current location, t_k in the range $[0, T]$ is the time of arrival to n_k, and $z_k = (z_k(1), z_k(2), \ldots, z_k(N))$ is an N-dimensional vector describing the status of each customer at epoch k. For each customer n, $z_k(n)$ takes on a value in the set $\{0, 1, 2\}$:

$$z_k(n) = \begin{cases}
0, & \text{if customer } n \text{ has not requested service by time } t_k, \\
1, & \text{if customer } n \text{ has made a request but has not been serviced by time } t_k, \\
2, & \text{if customer } n \text{ has been serviced by time } t_k.
\end{cases}$$

In initial state $s_0 = (0, 0, z_0)$, the vehicle resides at the depot at time 0 and $z_0(n)$ is 0 or 1 for each customer n in $\mathcal{N}\setminus\{0\}$. At final decision epoch K the process occupies a terminal state s_K in the set $\{(0, t_K, z_K) : t_K \in [0, T], z_K \in \{0, 1, 2\}^N\}$, where the vehicle has returned to the depot by time T and each customer’s status is 0, 1, or 2. The state space is the set $\mathcal{S} = \mathcal{N} \times [0, T] \times \{0, 1, 2\}^N$.

Actions

An action at epoch k is an assignment of the vehicle to a location in \mathcal{N}. When the process occupies state s_k, the set of feasible actions is

$$\mathcal{X}(s_k) = \left\{ x_k \in \{n \in \mathcal{N} : z_k(n) = 1\} \cup \{0\} : t_k + d(n_k, x_k) + d(x_k, 0) \leq T \right\}. \quad (1)$$

Condition (1) requires assignment to customers who have requested service or to the depot. Condition (2) restricts movement to locations from which the depot can be reached by time T.

18
Rewards

When the process occupies state s_k and decision x_k in $\mathcal{X}(s_k)$ is taken, a unit reward is accrued if a decision x_k moves the vehicle to a location where service has been requested: $R_k(s_k, x_k) = 1$ if $z_k(x_k) = 1$ and $R_k(s_k, x_k) = 0$ otherwise.

Transition

Following selection of action x_k from state s_k, the process transitions to a new state. We describe the transition in two parts, first to a post-decision state and then to a new pre-decision state. Transition to the post-decision state reflects the new vehicle location resulting from the selected action, the time at which the vehicle will arrive at the location, and a status update for the new location. We denote the post-decision state as $s^p_k = (n^p_k, t^p_k, z^p_k)$, where vehicle location is the selected decision $n^p_k = x_k$, time of arrival to n^p_k is $t^p_k = t_k + d(n_k, n^p_k)$, the status for location n^p_k is set to $z^p_k(n^p_k) = 2$ if n^p_k is a customer, and all other customer statuses remain the same.

We denote the next pre-decision state as $s_{k+1} = (n_{k+1}, t_{k+1}, z_{k+1})$. The transition from s^p_k to s_{k+1} marks the arrival of the vehicle to location $n_{k+1} = n^p_k$ at time $t_{k+1} = t^p_k$ as well as observation of any service requests arriving after time t_k and at or before time t_{k+1}. Denote the set of customers requesting service by $\omega_{k+1} \subseteq \{ n \in \mathcal{N} \setminus \{0\} : z^p_k(n) = 0 \}$, a subset of the status-0 customers in post-decision state s^p_k. Customer statuses are updated accordingly: $z_{k+1}(n) = 1$ for all n in ω_{k+1}. All other customer statuses remain the same.

Objective

The objective is to maximize the expected sum of rewards across the decision epochs.

5 Route-Based MDP Model

In this section, we formally present our route-based MDP model. The route-based MDP model includes the same model elements (decision epochs, states, rewards, transitions, and objective) as the conventional MDP model, but redefines the feasible action space $\mathcal{X}(s_k)$ to include planned routes. Definition 1 formalizes a space of route plans as a set coupled with an evaluation function:
Definition 1 (Route Plans and Rewards). A space of route plans Θ is a general set on which is defined a real-valued function $R^\theta : \Theta \to \mathbb{R}$.

Though Definition 1 is broad, route plans typically describe a sequence of potential future actions, such as customer visits, and reward functions typically correlate with the objective. While the components of route plans are problem-specific, they may simply contain a sequence of customers for each vehicle, but might also include additional information such as assumed arrival times or planned amounts of goods to be delivered. The route-based model carries the route plan in the state and reformulates the current-period reward to capture the difference in plan values rather than the immediate return for selecting a decision. Despite these differences, as we show in the next section, the route-based MDP model is equivalent to the conventional MDP model.

5.1 Model

We first define the actions associated with the route-based MDP model, followed by descriptions of states and transitions as well as the reward function. We note that the decision epochs and objective are unchanged from the conventional MDP.

Actions and Route Plans

We denote an action by the pair $(x_k, \theta_{k+1}) \in X(s_k) \times \Theta_{k+1}(s_k)$, where x_k and $X(s_k)$ are defined by the conventional MDP, θ_{k+1} is a route plan, and $\Theta_{k+1}(s_k)$ is the set of route plans given current state s_k. The action and route plans are indexed differently, k versus $k + 1$, to reflect that the action x_k will be executed in the current epoch k and that the route plan includes planned actions beginning in epoch $k + 1$. It is possible that $\Theta_{k+1}(s_k) = \emptyset$ or that $\emptyset \in \Theta_{k+1}(s_k)$. In these cases, selection of the action (x_k, \emptyset) proceeds as in the conventional MDP.

The example of Figure 4 illustrates the concept of an action-plan pair. In the example, we choose a route plan to be a sequence of feasible actions, an ordering of customers who have requested service but have not yet been visited. Beginning in state s_k with current route plan $\theta_k = (3, 5)$, the selected action $(x_k, \theta_{k+1}) = (2, (7, 6, 5))$ next visits Customer 2 and updates the route plan to visit Customers 7, 6, and 5. We provide additional examples in the next section.
States and Transitions

We augment the conventional MDP state variable as the pair \((s_k, \theta_k)\) to carry both the original state and the route plan selected by action \((x_{k-1}, \theta_k)\) in the previous decision epoch. In the initial state, we assume route plan \(\theta_0\) is empty and has value \(R^\theta(\emptyset) = 0\). Figure 4 illustrates the state variable in a route-based MDP. In addition to depicting vehicle location, arrival time, and customer statuses, the left panel of Figure 4 shows the current route plan \(\theta_k = (3, 5)\) visiting Customers 3 and 5. Similarly, the right panel of Figure 4 gives the updated route plan \(\theta_{k+1} = (7, 6, 5)\) paired with state \(s_{k+1}\).

Analogous to the conventional MDP model, upon selection of an action and route plan, the state variable transitions to an augmented post-decision state \(S^{X}(s_k, (x_k, \theta_k)) = (s^X_k, \theta_{k+1})\). Upon observation of random information \(\omega_{k+1}\), the post-decision state transitions to the next pre-decision state with the post-decision plan becoming the route plan of the new pre-decision state resulting in pre-decision state \((s_{k+1}, \theta_{k+1})\).

Marginal Rewards

We connect route plan selection with decision-making by redefining the conventional MDP reward function as a marginal reward accounting for the difference in value between a previous route plan and a new route plan as well as immediate contributions by the current-period action. Let \(R^\theta\) map a route plan to a real number. We can think of \(R^\theta\) as the value of a route plan \(\theta\). Though \(R^\theta\) may be freely defined, it is typically aligned with the problem and chosen structure of a route plan. We define the route-based MDP reward function as

\[
R^\Delta_k((s_k, \theta_k), (x_k, \theta_{k+1})) = R_k(s_k, x_k) + R^\theta(\theta_{k+1}) - R^\theta(\theta_k). \tag{3}
\]

We illustrate the marginal reward function via Figure 4, where \(\theta_k = (3, 5)\), \(\theta_{k+1} = (7, 6, 5)\), and \(x_k = 2\). Letting \(R^\theta(\cdot)\) be the number of customers included in a route plan, \(R^\theta(\theta_k) = 2\) and \(R^\theta(\theta_{k+1}) = 3\). Then, noting \(R_k(s_k, x_k) = 1\), \(R^\Delta_k((s_k, \theta_k), (x_k, \theta_{k+1})) = 1 + 3 - 2 = 2\).

While it is possible to include route plans in action selection but with no value by choosing \(R^\theta(\cdot) = 0\) (in which case the route-based MDP behaves as a conventional MDP), defining the reward function as a marginal difference highlights the long-term impact of route plan changes.
In particular, as the above example demonstrates, the marginal reward function shifts rewards that may potentially be accumulated later in the horizon into an earlier period. Thus, connecting solution approaches to a route-based model may naturally encourage anticipatory decision-making, even when methods focus primarily on current-period marginal rewards.

5.2 Route-Based MDP Model for the VRPSSR

In this section, we formalize the content of §2.3 by presenting a route-based MDP model for the VRPSSR, demonstrating differences between our formulation and the conventional MDP. To fully characterize the model, we need only specify the structure of route plans and how route plans are valued.

We define a route plan as a sequence of customers, each of which has requested service but has not yet been visited. Let \(N'(s_k, x_k) = \{n \in N \setminus \{x_k\} : z_k(n) = 1\} \) be the set of status-1 customers remaining in state \(s_k \) after selecting action \(x_k \). Then, given a current state \(s_k \), we define the space of routing plans \(\Theta_{k+1}(s_k) \) as the set of feasible ordered subsets of \(N'(s_k, x_k) \). An ordered subset is feasible if the customers in the subset can be visited in order, beginning at location \(x_k \), and ending at the depot, without violating duration limit \(T \). We define the value of a plan \(\theta_k \) as the number of status-1 customers on the route: \(R^\theta(\theta_k) = |\theta_k| \), where \(|\cdot|\) is the cardinality operator.

6 Model Equivalence

In this section, we make a formal connection between the conventional MDP model of §4 and the route-based MDP model of §5. Notably, for a given problem instance, we show the optimal value of a state for a suitably defined route-based MDP is related to the optimal value of a state in the conventional model, and that from an initial state the optimal values are the same. The result means that optimal policy values of conventional and route-based MDPs are the same and that we can easily derive an optimal policy for the conventional MDP model from the optimal policy of a route-based MDP.

To introduce the result, we first discuss the Bellman Equation. Often referred to as a value function or as the optimality equation, the Bellman Equation is a way of expressing the maximum reward that may be accumulated from a given state \(s_k \) onward to a terminal state. The optimality of
the Bellman equation follows from MDP model assumptions (see Puterman (2005) for a detailed presentation, properties, and derivation). For a conventional MDP, the optimal value of a state is

\[
V(s_k) = \max_{x_k \in X(s_k)} \left\{ R_k(s_k, x_k) + \mathbb{E} \left[V(s_{k+1} | s_k^x) \right] \right\},
\]

(4)

where the first term is the current-period reward and the second term, often referred to as the reward-to-go, is the value of the post-decision state. As is common, for all terminal post-decision states \(s_k^x\) we assume a null value for the reward-to-go:

\[
\mathbb{E} [V(s_{K+1}) | s_K^x] = 0.
\]

(5)

Similarly, in the route-based case, the Bellman Equation to calculate the optimal value of a state is

\[
V^\theta(s_k, \theta_k) = \max_{(x_k, \theta_{k+1}) \in X(s_k) \times \Theta(s_k)} \left\{ R^\Delta_k((s_k, \theta_k), (x_k, \theta_{k+1})) + \mathbb{E} \left[V^\theta(s_{k+1}, \theta_{k+1} | s_k^x) \right] \right\}
\]

(6)

and assume for all \(s_K^x\)

\[
\mathbb{E} [V^\theta(s_{K+1}, \theta_{K+1}) | s_K^x] = 0.
\]

(7)

While similar in form to the conventional Bellman Equation, the route-based Bellman Equation differs in two important ways. One, the first term of Equation (6) pulls reward into the current period that is captured in the second term of Equation (4). Two, the second term of Equation (6) is the value of the route-based post-decision state, but following the definition of \(R^\Delta\), it represents the expected change in marginal rewards rather than an accumulation of rewards as in Equation (4).

Though Equations (4) and (6) have different interpretations, Proposition 1 provides a relation between the conventional and route-based value functions. The proposition requires the values of initial and terminal route plans be zero. Condition 1 formalizes the requirement:

Condition 1. The value of the initial route plan \(\theta_0\) and the terminal route plan \(\theta_{K+1}\) are zero:

\[R^\theta(\theta_0) = R^\theta(\theta_{K+1}) = 0.\]

Proposition 1 states the value functions of the two formulations follow the simple relation

\[V^\theta(s_k, \theta_k) = V(s_k) - R^\theta(\theta_k).\]

Thus, with Condition 1, an optimal policy for each problem achieves the same value from the initial state and the models are equivalent. The intuition behind the relation
follows from recognizing the optimal value of a state in the route-based MDP results not only from current-period rewards but also from route plan values. Thus, relative to the conventional MDP, the route-based MDP accumulates value earlier in the horizon.

For an instance of the VRPSSR, Figure 5 depicts how rewards might accrue while servicing six customer requests in the conventional and route-based MDP models. In the conventional model, we observe unit increases at each decision epoch as a result of visiting a status-1 customer. The route-based model achieves the same value of six achieved by the conventional model, but in contrast we observe up-and-down value fluctuations across decision epochs. A rise in value indicates an increase in the marginal number of customers served by an updated routing plan whereas a decrease in value signifies a decline in the marginal number of planned visits.

We now formally state and prove the proposition.

Proposition 1 (Value Function Relation). If Condition 1 is satisfied, then $V^\theta(s_k, \theta_k) = V(s_k) - R^\theta(\theta_k)$ for all s_k in S, for all θ_k in $\Theta(s_k)$, and for $k = 0, 1, \ldots, K$.

Proof. The proof is by induction. We first show the result for terminal period K:
\[V^\theta(s_K, \theta_K) = \max_{(s_k, \theta_{k+1}) \in \mathcal{X}(s_k) \times \Theta(s_k)} \left\{ R_K^\theta \left((s_K, \theta_K), (x_k, \theta_{K+1})\right) \right\} \]

\[= \max_{(s_k, \theta_{k+1}) \in \mathcal{X}(s_k) \times \Theta(s_k)} \left\{ R_K(s_K, x_K) + R^\theta(\theta_{k+1}) - R^\theta(\theta_k) \right\} \quad (8) \]

\[= -R^\theta(\theta_K) + \max_{(s_k, \theta_{k+1}) \in \mathcal{X}(s_k) \times \Theta(s_k)} \left\{ R_K(s_K, x_K) \right\} \]

\[= -R^\theta(\theta_K) + \max_{x_k \in \mathcal{X}(s_k)} \left\{ R_K(s_K, x_K) \right\} \quad (10) \]

\[= V(s_K) - R^\theta(\theta_K). \quad (11) \]

The first equality follows from the definition of the route-based Bellman Equation and the assumption of Equation (7). Equation (8) follows from the definition of the marginal reward function for the route-based MDP. Equation (9) follows from Condition 1 and the fact that \(R^\theta(\theta_K)\) is constant over the maximization. The equality in Equation (10) is valid because the selection of a plan \(\theta_{K+1}\) does not impact \(R_K(s_K, x_K)\). Equation (11) follows from Equations (4) and (5).

We assume the result holds for periods \(k + 1, k + 2, \ldots, K - 1\). Then, for period \(k\):

\[V^\theta(s_k, \theta_k) = \max_{(s_k, \theta_{k+1}) \in \mathcal{X}(s_k) \times \Theta(s_k)} \left\{ R_K(s_k, x_k) + R^\theta(\theta_{k+1}) - R^\theta(\theta_k) \right\} \]

\[+ \mathbb{E}\left[V(s_{k+1}) - R^\theta(\theta_{k+1})|s_k^x\right] \quad (12) \]

\[= \max_{(s_k, \theta_{k+1}) \in \mathcal{X}(s_k) \times \Theta(s_k)} \left\{ R_K(s_k, x_k) + R^\theta(\theta_{k+1}) - R^\theta(\theta_k) \right\} \]

\[- R^\theta(\theta_{k+1}) + \mathbb{E}\left[V(s_{k+1})|s_k^x\right] \quad (13) \]

\[= -R^\theta(\theta_k) + \max_{(s_k, \theta_{k+1}) \in \mathcal{X}(s_k) \times \Theta(s_k)} \left\{ R_K(s_k, x_k) + \mathbb{E}\left[V(s_{k+1})|s_k^x\right] \right\} \quad (14) \]

\[= -R^\theta(\theta_k) + \max_{x_k \in \mathcal{X}(s_k)} \left\{ R_K(s_k, x_k) + \mathbb{E}\left[V(s_{k+1})|s_k^x\right] \right\} \quad (15) \]

\[= V(s_k) - R^\theta(\theta_k). \quad (16) \]

The first equality follows from the definition of the Bellman Equation for the route-based MDP. Equation (12) follows from the definition of the marginal reward for the route-based MDP and from the induction hypothesis. Equation (13) acknowledges the value of route plan \(\theta_{k+1}\) can be calculated separately from the post-decision value of \(s_{k+1}\). Equation (14) recognizes the value of
\(\theta_k \) depends on neither \(x_k \) nor \(\theta_{k+1} \). The equality in Equation (15) recognizes that neither \(R_k(s_k, x_k) \) nor \(\mathbb{E} \left[V(s_{k+1}) \bigg| s_k^x \right] \) are affected by \(\theta_{k+1} \). Finally, Equation (16) follows from the definition of the period-\(k \) value function in the conventional MDP.

7 A Route-based Model for a Dynamic Dial-A-Ride Problem

In previous sections of the paper, we use the VRPSSR as an illustrative example to motivate and explain route-based MDP models. In particular, we show a route-based MDP model for the VRPSSR is more intuitive and makes a stronger bridge between application and methods than does a conventional MDP model. To further highlight the advantages of route-based models, we present in this section a more realistic and more complex problem from the literature, the dynamic dial-a-ride problem (DDARP) addressed in Schilde et al. (2014). Similar to the VRPSSR, the DDARP seeks to service customer requests arriving randomly over a given time horizon, but with two added complexities often encountered in ride-sharing ventures. One, each request must be picked up and dropped off within a certain time frame. Two, travel times are stochastic, becoming known only after a vehicle enters a path between two locations. Consequently, and often the case in passenger transportation, the objective function considers passenger ride times between origins and destinations. Though the DDARP can be modeled as a conventional MDP, with decisions directing immediate vehicle movement as illustrated for the VRPSSR, such a model obscures the relationship between pickup and delivery decisions. Further, modeling decisions as the next location to visit explicitly captures ride-time violations only in the current period cost, hiding the impact of future violations. Thus, conventional MDP modeling techniques are not connected to an intuitive solution method, one explicitly linking present and future decisions via route plans, nor do conventional modeling approaches connect with the solution method of Schilde et al. (2014).

In this section, we show how a route-based MDP model overcomes the challenges faced by the conventional MDP model.

Following the notation presented in Schilde et al. (2014), we associate with a stochastic service request by customer \(n \) a pickup location, a drop-off destination, and a time window \([e_n, l_n]\) where \(e_n \) is the earliest a customer needs pickup and \(l_n \) is the latest time by which the customer desires to arrive at the destination. The objective is to minimize the expected sum of tardiness (drop-off time
for a customer \(n \) exceeds \(l_n \), earliness (pickup time for a customer \(n \) occurs before \(e_n \)), and ride-time violations (the length of time a customer spends in the vehicle exceeds 40 minutes) accrued over service of all customer requests.

Though we build on the route-based MDP for the VRPSSR, our choice of route plan for the DDARP requires more information than a sequence of pickups and drop-offs. In particular, because our choice of route evaluation function estimates the total tardiness, earliness, and ride-time violations for a given route, we carry in a route plan additional information about planned arrival times, planned pickup times, and time windows necessary to make the estimate. These choices allow for an unambiguous mapping from route plans to rewards and facilitate a route-based solution method. In the sections that follow, we present a route-based MDP model for the DDARP and discuss how the model connects with the solution method of Schilde et al. (2014).

7.1 Route-Based MDP

We begin a route-based MDP model by defining conventional MDP model elements. A decision epoch occurs when the vehicle arrives at a location. The current state \(s_k \) at decision epoch \(k \) includes the time of arrival, the vehicle’s current location, passengers on the vehicle, the times at which the passengers were picked up, the pickup and delivery locations of these in-process requests as well as those of any outstanding requests, and the associated time windows. An action \(x_k \) provides service at the vehicle’s current location and moves the vehicle to a location in the set \(\mathcal{X}(s_k) \) of origins and destinations of outstanding requests as well as destinations of in-process requests. Cost \(R(s_k, x_k) \) is the total tardiness, earliness, and ride-time violation incurred at the customer at the vehicle’s current location. Transition to a subsequent state begins with the observation of \(\omega_{k+1} \), the travel time required to reach the next location followed by the realization of new customer requests upon arrival to the next location, the event marking the start of decision epoch \(k + 1 \).

Structured similar to Figures 3 and 4, Figure 6 illustrates conventional and route-based MDP model elements for the DDARP in a single graphic. The left pane illustrates the current state. At time \(t_k = 20 \) the vehicle arrives to drop-off location D1 for Customer 1, picked up at time 0 and with a late time window of 15. In-process requests include Customer 2, currently a passenger on the vehicle, with drop-off location D2 and a closing time window of 50. Outstanding requests
include customer 3 and the just-made request from Customer 4. Respectively, the outstanding requests have pickup and delivery locations P3, D3, P4, and D4 denoted on the grid and time windows of [20, 80] and [40, 90]. Available actions include drop-off of Customer 1 plus movement to drop-off Customer 2 or to pickup Customers 3 or 4. The cost associated with any of these actions is $R(s_k, \cdot) = 20 - 15 = 5$ time units of tardiness dropping off Customer 1. The center pane illustrates the action servicing Customer D1 and moving the vehicle to P3. The right pane shows a travel time realization of 10 time units from D1 to P3 and does not indicate any new customer requests. We use the remaining portions of Figure 6 to illustrate route plans.

The space of routing plans $\Theta_k(s_{k-1})$ in state s_{k-1} is the set of feasible ordered subsets of destinations associated with in-process requests (excluding the vehicle’s current location) as well as pickup and drop-off locations accompanying outstanding requests. We represent such a subset by $(\theta_{k_1}, \ldots, \theta_{k_m})$ and label it feasible if pickups are sequenced ahead of deliveries for each customer and if the first element of the sequence is selected action x_{k-1}. Additionally, to facilitate route plan evaluation, we associate with a sequence of pickups and deliveries four pieces of information. First, denote by $a(\theta_{k_i})$ the planned arrival time to location θ_{k_i} (a number that might be a calculated expectation, an estimate via simulation, or a quantity obtained via some other method). Second,
denote by $p(\theta_k)$ the pickup time for the service request associated with location θ_k. If θ_k is a pickup location, then $p(\theta_k)$ is a planned quantity (again obtained via some measure). If θ_k is a drop-off location, then $p(\theta_k)$ is set to the pickup time of the customer’s origin. Third, denote by $e(\theta_k)$ the earliest time service may begin at location θ_k, set to early time window e_{θ_k} if θ_k is a pickup location and to $-\infty$ if θ_k is a delivery location. Fourth, denote by $l(\theta_k)$ the latest time at which service is desired at location θ_k, set to late time window l_{θ_k} if θ_k is a destination and to ∞ otherwise. Then, a route plan is the sequence of five-tuples

$$\theta_k = \left((\theta_{k_1}, a(\theta_{k_1}), p(\theta_{k_1}), e(\theta_{k_1})), \ldots, (\theta_{k_m}, a(\theta_{k_m}), p(\theta_{k_m}), e(\theta_{k_m}), l(\theta_{k_m})) \right). \tag{17}$$

We calculate the reward $R^\theta(\theta_k)$ associated with a route plan θ_k as the sum of projected earliness (i), tardiness (ii), and ride time violations (iii):

$$R^\theta(\theta_k) = \sum_{i=1}^{m} \left(\max \left(e(\theta_{k_i}) - a(\theta_{k_i}), 0 \right) + \max \left(a(\theta_{k_i}) - l(\theta_{k_i}), 0 \right) \right)$$
$$+ \max \left(a(\theta_{k_i}) - p(\theta_{k_i}) - 40, 0 \right).$$

Defining initial and terminal routing plans θ_0 and θ_{K+1} as empty, and noting $R^\theta(\emptyset) = 0$, our modeling choices satisfy Condition 1 and thus Proposition 1 holds, thereby establishing a formal relationship between the conventional DDARP model and our route-based MDP model.

Figure 6 illustrates route plan evolution and evaluation. The left pane of Figure 6 shows a current route plan θ_k with a sequence of locations (D1, P3, D2, D3), each location tagged with the four-tuple of associated data. Because the planned arrival time of 55 to D2 is five time units beyond the closing time window of 50, and because the projected ride time of Customer 2 is five time units greater than 40, $R^\theta(\theta_k) = 5 + 5 = 10$. Following action selection of $x_k = P3$, the center pane of Figure 6 depicts updated route plan θ_{k+1} with a sequence of locations (P3, P4, D2, D3, D4) and associated data. The updated route plan adds Customer 4 to the location sequence and adjusts planned arrival and pickup times to account for the five time units of tardiness at location D1. Because the planned arrival time of 60 to D2 is 10 time units past the latest drop-off time of 50 and because the projected ride time of Customer 2 is 10 time units beyond the limit, $R^\theta(\theta_{k+1}) =$
Thus, the marginal reward is $R^k_{\Delta}((s_k, \theta_k), (x_k, \theta_{k+1})) = 5 + 20 - 10 = 15$. The right pane of Figure 6 shows the arrival of the vehicle to location P3 at time 30, five time units before the planned arrival time of 35. Though an earliness penalty will be incurred, the arrival time to P3 allows a subsequent route plan update to move projected arrival times ahead by five time units, an update that would yield a negative marginal reward in decision epoch $k + 1$.

7.2 Solution Method

The route-based MDP model we propose for the DDARP aligns with the solution methodology of Schilde et al. (2014). In particular, rather than explicitly considering conventional MDP actions at each epoch, Schilde et al. (2014) work instead with routes that address not only current-period decisions, but which seek to anticipate potential vehicle movement in future scenarios.

At decision epoch k in state s_k, the method of Schilde et al. (2014) begins by inserting new requests realized in ω_k into a route plan θ_k. As in equation (17), each element of the plan is a customer location with an associated four-tuple of data. Then, Schilde et al. (2014) seek to improve the route plan via a variable neighborhood search (VNS) scheme. The VNS evaluates candidate route plans via reward function R^θ and by sampling travel times, returning both an action for the current period as well as an updated route plan. Thus, the VNS concurrently searches the space of feasible actions $\mathcal{X}(s_k)$ and the space of route plans $\Theta(s_k)$. Because Schilde et al. (2014) seek to maximize cost savings achieved by x_k and θ_{k+1} relative to θ_k, the VNS procedure may be viewed as a method to minimize marginal reward $R^\Delta((s_k, \theta_k), (x_k, \theta_{k+1}))$.

Connecting the solution approach of Schilde et al. (2014) to the route-based DVRP via the marginal reward, as well as operating on routes, are strong links between model and method. Similar connections to a route-based MDP model might be made with the works of Bent and Van Hentenryck (2004), Coelho et al. (2014), Gendreau et al. (1999), Ghiani et al. (2012), Klapp et al. (2018a), Powell et al. (2000), Thomas (2007), and Voccia et al. (2019). In each of these papers, the DVRP solution methods operate on routes, at each epoch simultaneously considering current-period actions and updated routing plans.
8 Conclusion

We present a route-based MDP model for DVRPs, demonstrating equivalence to conventional MDPs under an easily satisfied condition. Importantly, our modeling approach provides a direct connection between a dynamic and stochastic optimization model and the route-based solution methods found in much of the DVRP literature. Moreover, the model-method connection we establish provides routing researchers with a framework to clearly describe their problems and related solution approaches.

As a model for DVRPs, our work opens the door to a more rigorous study of DVRPs. One direction for future research is to examine various components of route-based MDP models, exploring procedures to formulate, generate, and evaluate route plans. Further, route-based MDPs may inspire new DVRP solution methods. For instance, though Ulmer et al. (2016) do not explicitly present a route-based MDP model in their work on dynamic same-day delivery, they operate on a set of route plans and evaluate the route plans by means of value-function approximation. More importantly, Ulmer et al. (2016) include the additional information embedded in their route plan to improve the performance of a value-function approximation. There are likely other problem classes in which information derived from a route plan might enhance the quality of a solution approach.

Another interesting avenue for future research is to further generalize the route-based model. For example, instead of a sequence of customer visits, a route plan might be expanded to an a priori policy (see Campbell and Thomas (2008) and Gendreau et al. (2016) for overviews of a priori route policies). A priori policies are characterized by routes or sets of routes, but also include recourse rules that allow the routes to respond to realizations of stochastic information.

Finally, though we present the route-based MDP model specifically for DVRPs, the idea of a plan-based MDP can be extended to other domains where sequential decision-making might benefit from operating on plans rather than on only conventional MDP model elements. We anticipate potential applications in scheduling, project management, and treatment pathway identification in healthcare.
Acknowledgements

Justin Goodson wishes to express appreciation for the support of Saint Louis University’s Center for Supply Chain Management. We also like to thank Anna Ulmer for the artwork in Figure 1.

References

