How do we design the database for an application?

1. Analyze the problem.
 - Identify the entities, relationships, and attributes
 - Use Entity-Relationship model to capture design
2. Convert the E-R diagram into relational schema.
 - Check the schema for redundancies and anomalies – normalization
 - Input the schema into a DBMS
3. and Tuning:
 - Refine database based on expected usage

Entity-Relationship Model

- Proposed by Peter Chen in 1976 as a way to unify the network and relational database views.
- Conceptual data model that views the real world as entities and relationships.

contains:
- An object that exists and is distinguishable from other objects.
 - Example: specific person, company, event, plant
- have
 - Example: people have names and addresses
- An is a set of entities of the same type that share the same properties.
 - Example: set of all persons, companies, trees, holidays
Entity Sets: customer and loan

<table>
<thead>
<tr>
<th>customer_id</th>
<th>customer name</th>
<th>street</th>
<th>city</th>
<th>loan number</th>
<th>amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>321-12-3123</td>
<td>Jones</td>
<td>Main</td>
<td>Harrison</td>
<td>L-17</td>
<td>1000</td>
</tr>
<tr>
<td>019-28-3746</td>
<td>Smith</td>
<td>North</td>
<td>Rye</td>
<td>L-23</td>
<td>2000</td>
</tr>
<tr>
<td>677-89-9011</td>
<td>Hayes</td>
<td>Main</td>
<td>Harrison</td>
<td>L-15</td>
<td>1500</td>
</tr>
<tr>
<td>555-55-5555</td>
<td>Jackson</td>
<td>Dupont</td>
<td>Woodside</td>
<td>L-14</td>
<td>1500</td>
</tr>
<tr>
<td>244-66-8800</td>
<td>Curry</td>
<td>North</td>
<td>Rye</td>
<td>L-19</td>
<td>500</td>
</tr>
<tr>
<td>963-96-3963</td>
<td>Williams</td>
<td>Nassau</td>
<td>Princeton</td>
<td>L-11</td>
<td>900</td>
</tr>
<tr>
<td>335-57-7991</td>
<td>Adams</td>
<td>Spring</td>
<td>Pittsfield</td>
<td>L-16</td>
<td>1300</td>
</tr>
</tbody>
</table>

Relationship Sets

- **A relationship** is an association among several entities

 Example:

 Hayes **depositor** A-102

 customer entity relationship set *account* entity

- **A relationship set** is a mathematical relation among \(n \geq 2 \) entities, each taken from entity sets

 \[\{(e_1, e_2, \ldots, e_n) \mid e_1 \in E_1, e_2 \in E_2, \ldots, e_n \in E_n\} \]

 where \((e_1, e_2, \ldots, e_n)\) is a

 Example:

 (Hayes, A-102) \(\in\) depositor

Relationship Set: borrower

- **An attribute** can also be property of a

 For instance, the **depositor** relationship set between entity sets *customer* and *account* may have the attribute **access-date**

Relationship Sets

- **An attribute** can also be property of a

 For instance, the **depositor** relationship set between entity sets *customer* and *account* may have the attribute **access-date**
Degree of a Relationship Set

- Refers to the number of entity sets that participate in a relationship set.
- Relationship sets that involve two entity sets are (or degree two). Generally, most relationship sets in a database system are binary.
- Relationship sets may involve more than two entity sets.
 - Example: Suppose employees of a bank may have jobs (responsibilities) at multiple branches, with different jobs at different branches. Then there is a ternary relationship set between entity sets employee, job, and branch.
- Relationships between more than two entity sets are rare. Most relationships are binary. (More on this later.)

Attributes

- An entity is represented by a set of attributes, that is descriptive properties possessed by all members of an entity set.
 - Example:

 \[
 \text{customer} = (\text{customer_id, customer_name, customer_street, customer_city}) \\
 \text{loan} = (\text{loan_number, amount})
 \]
 - Domain - the set of permitted values for each attribute
 - Attribute types:
 - Simple and composite attributes.
 - Single-valued and multi-valued attributes
 - Example: multivalued attribute: phone_numbers attributes
 - Derived attributes
 - Can be computed from other attributes
 - Example: age, given date_of_birth

Composite Attributes

- Express the number of entities to which another entity can be associated via a relationship set.
- Most useful in describing relationship sets.
- For a binary relationship set the mapping cardinality must be one of the following types:
 - One to one
 - One to many
 - Many to one
 - Many to many

Mapping

- Express the to which another entity can be associated via a relationship set.
- Most useful in describing relationship sets.
- For a binary relationship set the mapping cardinality must be one of the following types:
 -
 -
 -
 -
Mapping Cardinalities

- One to one
- Note: Some elements in A and B may not be mapped to any elements in the other set

- One to many

Mapping Cardinalities

- Many to one
- Note: Some elements in A and B may not be mapped to any elements in the other set

- Many to many

Keys

- A super key of an entity set is a set of one or more attributes whose values uniquely determine each entity.

- A candidate key of an entity set is a minimal super key
 - Customer_id is candidate key of customer
 - account_number is candidate key of account

- Although several candidate keys may exist, one of the candidate keys is selected to be the primary key.

Keys for Relationship Sets

- The combination of primary keys of the participating entity sets forms a super key of a relationship set.
 - (customer_id, account_number) is the super key of depositor
 - NOTE: this means a pair of entity sets can have at most one relationship in a particular relationship set.

 Example: if we wish to track all access_dates to each account by each customer, we cannot assume a relationship for each access. We can use a multivalued attribute though.

- Must consider the mapping cardinality of the relationship set when deciding what are the primary keys in case of more than one candidate key.

- Need to consider semantics of relationship set in selecting the primary key in case of more than one candidate key.
E-R Diagrams

- Rectangles represent entity sets.
- Diamonds represent relationship sets.
- Lines link attributes to entity sets and entity sets to relationship sets.
- Ellipses represent attributes.
- Double ellipses represent multivalued attributes.
- Dashed ellipses denote derived attributes.
- Underline indicates primary key attributes.

E-R Diagram With Composite, Multivalued, and Derived Attributes

Relationship Sets with Attributes

- The labels “manager” and “worker” are called roles; they specify how employee entities interact via the works_for relationship set.
- Role labels are optional and are used to clarify semantics of the relationship.

Roles

- The labels “manager” and “worker” are called roles; they specify how employee entities interact via the works_for relationship set.
- Role labels are optional and are used to clarify semantics of the relationship.
Cardinality Constraints

- We express cardinality constraints by drawing either a directed line (→), signifying “one,” or an undirected line (—), signifying “many,” between the relationship set and the entity set.

- One-to-one relationship:
 - A customer is associated with at most one loan via borrower
 - A loan is associated with at most one customer via borrower

- In a one-to-many relationship, a loan is associated with at most one customer via borrower, a customer is associated with several (including 0) loans via borrower

- In a many-to-one relationship, a loan is associated with several (including 0) customers via borrower, a customer is associated with at most one loan via borrower

- A customer is associated with several (possibly 0) loans via borrower
- A loan is associated with several (possibly 0) customers via borrower
Participation of an Entity Set in a Relationship Set

- (indicated by double line): every entity in the entity set participates in at least one relationship in the relationship set
 - E.g. participation of loan in borrower is
 - every loan must have a customer associated to it via borrower
- : some entities may not participate in any relationship in the relationship set
 - Example: participation of customer in borrower is

Alternative Notation for Cardinality Limits

Cardinality limits can also express participation constraints

E-R Diagram with a Ternary Relationship

Cardinality Constraints on Ternary Relationship

- We allow at most one arrow out of a ternary (or greater degree) relationship to indicate a cardinality constraint
- E.g.
 - If there is more than one arrow, of defining the meaning.
 - E.g a ternary relationship R between A, B and C with arrows to B and C could mean
 1. each A entity is associated with a unique entity from B and C or
 2. each pair of entities from (A, B) is associated with a unique C entity, and each pair (A, C) is associated with a unique B
- Each alternative has been used in different formalisms
- To avoid confusion we
Design Issues

- Choice mainly depends on the structure of the enterprise being modeled, and on the semantics associated with the attribute in question.

Design Issues

- Choice mainly depends on the structure of the enterprise being modeled, and on the semantics associated with the attribute in question.

Possible guideline is to designate a relationship set to describe an action that occurs between entities.

Although it is possible to replace any nonbinary (n-ary, for \(n > 2 \)) relationship set by a number of distinct binary relationship sets, a n-ary relationship set shows more clearly that several entities participate in a single relationship.
Binary Vs. Non-Binary Relationships

- Some relationships that appear to be non-binary may be better represented using binary relationships
 - E.g. A ternary relationship parents, relating a child to his/her father and mother, is best replaced by two binary relationships, father and mother
 - Using two binary relationships allows (e.g. only mother being known)
 - But there are some relationships that are

 - Example: works_on

Converting Non-Binary Relationships to Binary Form

- In general, can be represented using binary relationships by creating an artificial entity set.
 - Replace R between entity sets A, B and C by an entity set E, and three relationship sets:
 1. R_A, relating E and A
 2. R_B, relating E and B
 3. R_C, relating E and C
 - Create a special identifying attribute for E
 - Add any attributes of R to E
 - For each relationship (a_i, b_i, c_i) in R, create:
 1. a new entity e_i in the entity set E
 2. add (e_i, a_i) to R_A
 3. add (e_i, b_i) to R_B
 4. add (e_i, c_i) to R_C

Converting Non-Binary Relationships

- Also need to translate constraints may not be possible
 - There may be instances in the translated schema that cannot correspond to any instance of R
 - We can avoid creating an identifying attribute by making E identified by the three relationship sets (described later)
affect ER Design

- Can make access-date an attribute of account, instead of a relationship attribute, if each account can have only one customer.
- That is, the relationship from account to customer is many to one, or equivalently, customer to account is one to many.