Dmitry Solenov, Ph.D.
Assistant Professor
Physics
Research Interests
Research Interests
Theoretical and Computational Condensed Matter Physics:
- Quantum information and computing (superconducting systems, NV-diamond, quantum dots)
- "All-surface" materials at nano- and meso-scale (phases, functionalization, transport)
- Phase transitions and quantum phase transitions
- Chiral magnetic ordering
- Unconventional superconductivity
Publications and Media Placements
[42] M. Nikolo, J. Singleton, D. Solenov, J. Jiang, J. Weiss, and E. Hellstrom, Upper critical and irreversibility fields in Ba(Fe0.95Ni0.05)2As2 and Ba(Fe0.94Ni0.06)2As2 pnictide bulk superconductors, J. Supercond. Nov. Magn. 30, 331 (2017). doi:10.1007/s10948-016-3726-5.
[41] M. Nikolo, J. Singleton, D. Solenov, J. Jiang, J. Weiss, and E. Hellstrom, Upper critical and irreversibility fields in Ba(Fe0.92Co0.08)2As2 and Ba(Fe0.92Co0.09)2As2 pnictide bulk superconductors, J. Supercond. Nov. Magn. 30, 561 (2017). doi:10.1007/s10948-016-3727-4.
[40] T. Cavin, D. Solenov, Reduction of branching graphs supporting continuous time return quantum walks, arXiv:1602.02446 [quant-ph].
[39] D. Solenov, Quantum gates via continuous time quantum walks in multiqubit systems with non-local auxiliary states, Quantum Information and Computation 17, 415 (2017); (arXiv:1512.06399 [quant-ph]).
[38] D. Solenov, Coherent modification of entanglement: benefits due to extended Hilbert space, Quantum Information and Computation 16, 954 (2016); (arXiv:1511.08254 [quant-ph]).
[37] K. A. Velizhanin, N. Dandu, D. Solenov, Electromigration of bivalent functional groups on graphene, Phys. Rev. B. 89, 155414 (2014).
[36] D. Solenov, S. E. Economou, T. L. Reinecke, Excitation spectrum as a resource for efficient two-qubit entangling gates, Phys. Rev. B. 89, 155404 (2014).
[35] D. Solenov, S. E. Economou, T. L. Reinecke, Two-qubit quantum gates for defect qubits in diamond and similar systems, Phys. Rev. B 88, 161403(R) (2013).
[34] D. Solenov, C. E. Junkermeier , T. L. Reinecke, K. A. Velizhanin, Tunable adsorbate-adsorbate interactions on graphene, Phys. Rev. Lett. 111, 115502 (2013).
[33] C. E. Junkermeier, D. Solenov, T. L. Reinecke, Adsorption of NH2 on Graphene in the Presence of Other Defects, J. Phys. Chem. C, 117, 2793 (2013).
[32] S. G. Carter, T. M. Sweeney, M. Kim, C. S. Kim, D. Solenov, S. E. Economou, T. L. Reinecke, L. Yang, A. S. Bracker, and D. Gammon, Quantum control of a spin qubit coupled to a photonic crystal cavity, Nature Photonics 7, 329 (2013); Interview: Flying qubit carrying a spin qubit, Nature Photonics 7, 336 (2013).
[31] D. Solenov, S. E. Economou, T. L. Reinecke, Fast two-qubit gates for quantum computing in semiconductor quantum dots using a photonic microcavity, Phys. Rev. B 87, 035308 (2013).
[30] D. Solenov, K. A. Velizhanin, Adsorbate transport on graphene by electromigration, Phys. Rev. Lett. 109, 095504 (2012).
[29] A. Sykes, D. Solenov, D. Mozyrsky, Bloch-Redfield theory of high-temperature magnetic fluctuations in interacting spin systems, Phys. Rev. B 85, 174419 (2012).
[28] D. Solenov, D. Mozyrsky, I. Martin, Chirality waves in two-dimensional magnets, Phys. Rev. Lett. 108, 096403 (2012).
[27] D. Solenov, D. Mozyrsky, Cold atom qubits, J. Comput. Theor. Nanosci. 8, 481 (2011).
[26] D. Solenov, D. Mozyrsky, Macroscopic two-state system in trapped atomic condensates, Phys. Rev. A 82, 061601(R) (2010).
[25] R. M. Kalas, D. Solenov, E. Timmermans, Reentrant stability of BEC standing wave patterns, Phys. Rev. A 81, 053620 (2010).
[24] D. Solenov, D. Mozyrsky, Metastable states and macroscopic quantum tunneling in a cold atom Josephson ring, Phys. Rev. Lett. 104, 150405 (2010).
[23] D. Solenov, I. Martin, D. Mozyrsky, Stability of odd-frequency superconducting state, Phys. Rev. B 79, 132502 (2009).
[22] D. Solenov, D. Mozyrsky, Quantum nucleation and macroscopic quantum tunneling in cold-atom boson-fermion mixtures, Phys. Rev. A 78, 053611 (2008).
[21] V. Privman, G. Strack, D. Solenov, M. Pita, E. Katz, Optimization of enzymatic biochemical logic for noise reduction and scalability: how many biocomputing gates can be interconnected in a circuit?, J. Phys. Chem. B. 112, 11777 (2008).
[20] D. Solenov, D. Mozyrsky, Kinetics of phase separation transition in cold-atom boson-fermion mixtures, Phys. Rev. Lett. 100, 150402 (2008).
[19] V. A. Burdov, D. Solenov, Dissipative regime of dynamic localization in double quantum dot, Int. J. of Nanoscience 6, 389 (2007).
[18] D. Solenov, Unbalanced renormalization of tunneling in MOSFET-type structures in strong high-frequency electric fields, Phys. Rev. B 76, 115309 (2007).
[17] D. Tolkunov, D. Solenov, Quantum phase transition in the multi-mode Dicke model, Phys. Rev. B 75, 024402 (2007).
[16] D. Solenov, D. Tolkunov, V. Privman, Exchange interaction, entanglement and quantum noise due to a thermal bosonic field, Phys. Rev. B 75, 035134 (2007).
[15] V. Privman, D. Solenov, Coherence and entanglement in two-qubit dynamics: interplay of the induced exchange interaction and quantum noise due to thermal bosonic environment, Proc. of SPIE 6573, 657303, (2007).
[14] D. Solenov, D. Tolkunov, V. Privman, Coherent interaction of spins induced by thermal bosonic environment, Phys. Lett. A 359, 81 (2006).
[13] L. Fedichkin, D. Solenov, C. Tamon, Mixing and decoherence in continuous-time quantum walks on cycles, J. Quantum Inf. Comp. 6, 263 (2006).
[12] D. Solenov, L. Fedichkin, Non-unitary quantum walks on hyper-cycles, Phys. Rev. A 73, 012308 (2006).
[11] D. Solenov, V. Privman, Evaluation of decoherence for quantum computing architectures: qubit system subject to time-dependent control, Int. J. of Modern Physics B 20, 1476 (2006).
[10] D. Solenov, L. Fedichkin, Continuous-time quantum walks on a cycle graph, Phys. Rev. A 73, 012313 (2006).
[9] V. Privman, D. Solenov, D. Tolkunov, Onset of entanglement and noise cross-correlations in two-qubit system interacting with common bosonic bath, Proc. Conf. ICSICT2006, 1054 (2006).
[8] V. Privman, D. Solenov, Decoherence of dynamically manipulated qubits, Proc. Conf. IEEE-NANO 2006, vol. 2, 842, (IEEE Press, Monterey, CA, 2006).
[7] D. Solenov, V. A. Burdov, Nonlinear suppression of relaxation in dynamic localization phenomena in a double quantum dot, Phys. Rev. B 72, 085347 (2005).
[6] V. A. Burdov, D. Solenov, Dynamical control of decoherence in double quantum dot, Proc. of 13th International Symposium “Nanostructures: Physics and Technology”, Ioffe Institute (2005).
[5] V. A. Burdov, D. S. Solenov, Dynamical control of electron states in double quantum dot, Physica E 24, 217 (2004).
[4] V. A. Burdov, D. S. Solenov, Dynamic control of electron states in a double quantum dot under weak dissipation conditions, JETP 98, 605 (2004).
[3] D. Solenov, V. Privman, Models of short-time qubit decoherence, Proc. SPIE 5436, 172 (2004).
[2] V. A. Burdov, D. S. Solenov, Nonlinear response of electronic subsystem weakly coupled with resonator in double quantum dot to strong variable action, Izvestiya Akademii Nauk, Rossijskaya Akademiya Nauk, Seriya Fizicheskaya 68-1, 108 (2004).
[1] V. A. Burdov, D. S. Solenov, Controllable electron dynamics in a finite-size quantum well Lattice, Phys. Lett. A 305, 427 (2002).