Saint Louis University

Department of Biology

Dr. Fenglian Xu
Assistant Professor - Ph.D., University of Alberta

Contact information:
Office phone: (314) 977-3953
Fax: (314) 977-3658
E-mail: fenglianxu@slu.edu

Mail: Department of Biology, Saint Louis University, 3507 Laclede Ave, Saint Louis, MO 63103-2010

Courses: Introduction to Neuroscience: Molecular, Cellular and Systemic

Lab web page: https://sites.google.com/a/slu.edu/xu-lab/

Research interests:
Neuronal outgrowth, regeneration, synapse formation and plasticity are pivotal not only for normal brain development and function, but also for brain repair after injury or degeneration. The primary research interest in my laboratory focuses on understanding the mechanisms that control synapse formation and transmission, and how environmental factors may impact molecules and cellular events that are involved in normal brain development and function.  

My lab conduct research using both the mollusk Lymnaea stagnalis model and rat (cortical and hippocampal) cell culture in conjunction with state-of-the-art electrophysiological, calcium imaging, confocal microscopy and molecular biological techniques. The long-term objective of my research is to identify critical genes or proteins that are involved in neuronal outgrowth, regeneration, synaptogenesis, and plasticity. The identified genes or proteins will then be manipulated experimentally to deduce their physiological significance in brain development and animal behaviors. The knowledge gained from these studies will help our efforts in repairing brain damage after stroke, injury, and in treating neurodevelopmental and neurodegenerative diseases.

Research opportunities:

Both graduate and undergraduate students are welcome to contact Dr. Xu for a variety of research opportunities in the laboratory. Students will learn a wide range of modern neuroscience techniques including cell culture, electrophysiology (patch clamp, sharp electrode, amperometric recording etc), fluorescence calcium imaging, immunocytochemistry, confocal microscopy, molecular, and pharmacological techniques. Students are also encouraged to design and conduct their own research projects.

Publications:

Janes, T.A., Xu, F., Syed. N.I (2015) Graded hypoxia acts through a network of distributed peripheral oxygen chemoreceptors to produce changes in respiratory behavior and plasticity. European Journal of Neuroscience, 42(2):1858-1871

Ghazavi, A., Westwich, D., Xu, F., Wijdenes, P., Syed, N.I., Dalton, C. (2015) A circular, planar electrode serves as a better substrate for neuronal stimulation than sinusoidal and spiral electrodes. Journal of Neuroscience Methods, 248: 51-58.

Xu, F., Luk, C., Wiermsa-Meems, R., Baehre, K., Herman, C., Zaidi, W., Wong, N., and Syed, N.I. (2014) Neuronal somata and extrasomal compartments play distinct roles during synapse formation between Lymnaea neurons. Journal of Neuroscience, 34(34):11304-15

Chen, P., Jiang, H., Wen, B., Ren, S., Chen, Y., Ji, W., Hu, B., Zhang, J., Xu, F., Zhu, Z. (2014) Gastrodin suppresses amyloid β-induced increase of spontaneous discharges in entorhinal cortex of rats. Neural Plasticity, 2014:1-11, ID: 320937

Chen, S., Chen, P., Jiang, H., Mi, Z., Xu, F. *, Hu, B., Zhang, J., Zhu., Z. (2014) Persistent sodium currents contribute to Aβ1-42-induced hyperexcitation of hippocampal CA1 pyramidal neurons. Neuroscience Letters, 580: 62-67 (co-corresponding author)

Zhu, Z., Xu, F., Ji, W., Ren, S., Chen, F., Chen, P., Jiang, H., Mi, Z., Hu, B., Zhang, J., Xiong, Y. (2014) Synaptic mechanisms underlying thalamic activation-induced plasticity in the rat auditory cortex. Journal of Neurophysiology, 111(9):1746-58.

Ren, S., Shao, H., Ji, W., Xu, F., Chen, P., Jiang, H., Mi, Z., Wen, Bo, Zhu, G., Zhu, Z. (2014) Riluzole prevents soluble Aβ1-42 oligomers-induced perturbation of spontaneous discharges in the hippocampal CA1 region of rats. Amyloid, 4:1-9.

Zhu, Z., Xu, F., Wu, J., Ren, S., Zhang, Y., Hu, B., Zhang, J., Han, L., Xiong, Y. (2013) Frequency-specific plasticity of the auditory cortex elicited by thalamic stimulation in the rat. Neuroscience Letters, 555: 30-35

Xu, F., Piett, C., Farkas, S., Qazzaz, M.., and Syed, N.I. (2013) Silver nanoparticles (AgNPs) cause degeneration of cytoskeleton and disrupt synaptic machinery of cultured cortical neurons. Molecular Brain, 6(1): 29. (Corresponding author)

Xu, F., Farkas, S., Kortbeek, S., Zhang, F.X., Chen, L., Zamponi, G.W., and Syed, N.I. (2012) Mercury-induced toxicity of rat cortical neurons is mediated through NMDA receptors. Molecular Brain, 5(1): 30. (Corresponding author)

Getz, A, Xu, F. and Syed N.I. (2012) Antidepressant Pharmacotherapy - Do the Benefits Outweigh the Risks? InTech book chapter - Mental Illness (ISBN: 978-953-307-779-6)

Getz, A., Xu, F., Zaidi, W., Syed, N.I. (2011) The antidepressant Fluoxetine but not Citalopram suppresses synapse formation and synaptic transmission between Lymnaea neurons by perturbing pre- and postsynaptic machinery. European Journal of Neuroscience, 34(2): 221-234

Xu, F., Proft J., Gibbs, S., Winkfein, B., Johnson, J.N., Syed, N.I., and Braun J.E.A. (2010) Quercetin causes cysteine string protein dimerization and impairs synaptic transmission. PLoS ONE, 5 (6): e11045.

Xu, F., Luk, C., Richard, M.P, Zaidi, W., Svetlana, F., Getz, A., Lee, A., van Minnen, J., and Syed, N.I. (2010) Antidepressant Fluoxetine suppresses neuronal growth and perturbs synapse formation between cholinergic neurons. European Journal of Neuroscience, 31(6): 994-1005.

Xu, F., Hennessy, D.A., Lee, T., and Syed, N.I. (2009) Trophic factor-induced intracellular calcium oscillations are required for the expression of postsynaptic acetylcholine receptors during synapse formation between Lymnaea neurons. Journal of Neuroscience 29 (7): 2167-2176.

Xu, F., Tse, F.W., and Tse, A.. (2008) Stimulatory actions of pituitary adenylate cyclase-activating polypeptide (PACAP) in rat carotid glomus cells. Advanced Experimental Medical Biology 605:69-74.

Xu, F., Tse, F.W. and Tse, A. (2007) Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates the oxygen sensing type I (glomus) cells of rat carotid bodies via reduction of a background TASK-like K+ current. Journal of Neurochemistry 101(5):1284-93.

Xu, F., Xu, J., Tse, F.W. and Tse, A. (2006) Adenosine stimulates depolarization and rise in cytoplasmic Ca2+ concentration in type I cells of rat carotid bodies. American Journal of Physiology- Cell Physiology 290(6):C1592-8.

Xu, J., Xu, F., Tse, F.W. and Tse, A. (2005) ATP inhibits the hypoxia response in type I cells of rat carotid bodies. Journal of Neurochemistry 92:1419-1430.

Updated 09/01/2015

Higher purpose. Greater good.
© 1818 - 2017  SAINT LOUIS UNIVERSITY   |   Disclaimer   |  Mobile Site
St. Louis   |   Madrid