Michael J. Hankins, Ph.D.

Employment Southern Illinois University-Edwardsville Edwardsville, II 1/1/2017-6/30/2021 Instructor/Visiting Assistant Professor/Assistant Professor (Dept. of Chemistry) Instructor for Introductory Chemistry Course

- Lab Coordinator for Engineering Chemistry labs
- Electrochemistry research
- Physical Chemistry lecture and lab coordinator

Saint Louis University St. Louis, MO 7/1/2010- present

Assistant Professor Chemistry-NTT (7/1/2021-present)

- Instructor for lower and upper level chemistry courses
- Member of Majors Retention Research Committee
- Chair of Diversity, Equity, and Inclusion committee

Special Assistant to the VP for Recruitment in STEM (7/1/2021-present)

- Support programming for the Division of Diversity and Innovative Community Engagement
- Unify STEM recruitment efforts for the university
- Develop partnerships/pipelines for future students

Teaching Assistant (7/1/2010-12/31/2011)

- Facilitate general chemistry lab (2-3 sections per semester)
- Proctor examinations for general, organic, and nursing majors chemistry
- Grade both laboratory and lecture exams
- Create general chemistry lecture videos

Research Assistant (1/1/2012-7/5/2017)

- Non-linear dynamics in chemical systems
- Responsible for ordering equipment and materials for the lab group
- Train high school, undergraduate, and new graduate students to use lab equipment and software
- Assist with research progress of undergraduate/high school students

Food and Drug Administration (FDA) St. Louis, MO 6/1/2007-5/31/2009

Science Aide/Intern

- Division of Pharmaceutical Analysis
- USP tablet assays
- HPLC
- IR Spectroscopy
- Raman Spectroscopy
- X-ray Spectroscopy

Education	Saint Louis University St. Louis, MO 8/22/2005-7/5/2017 PhD. in Integrated and Applied Sciences (July 2017)
	 Chemistry track - Analysis and modeling of complex reaction networks Focuses on interdepartmental research between applied science fields M.S. in Chemistry (May 2012) Coursework from all disciplines of chemistry Graduate Research in Electrochemistry Enzymatic Fuel cells Reciprocal rates of symmetrical chemical reactions B.S. Chemistry (May 2009) Undergraduate research on optimal control of complex chemical reactions
Lab Techniques and Training	 Nonlinear digital signal processing techiques Scanning Electron Microscopy Operation of Rotating Ring Disc Electrode Use of MATLAB and LabVIEW softwares Modeling electrochemical reactions Chemical Vapor Deposition Electrochemistry, including potentiometry and cyclic voltammetry (CV) Preparation of Samples for High- Performance Liquid Chromatography Network topology/ connectomics analysis Corrosion analysis with charge transfer resistance measurements
Research	 Networks of chemical reaction units Design optimal control of complex reaction by measuring system response Develop control-based techniques for solving nonlinear mathematical model equations Process data using analytical techniques (FFT, Hilbert, etc.) Fuel Cell Research Oscillatory and bi-stable systems Synchronization of periodic and chaotic oscillators
Publications	 Gryniewicz, C. M., Spencer, J. A., Hankins, M., & Kauffman, J. F. (2007). Spectroscopic methods for rapid determination of diethylene glycol in glycerin. <i>American Pharmaceutical Review</i>, <i>10</i>(7), 24. Harada, T., Tanaka, H. A., Hankins, M. J., & Kiss, I. Z. (2010). Optimal waveform for the entrainment of a weakly forced oscillator. <i>Physical review letters</i>, <i>105</i>(8), 088301. Hankins, M. J., Nagy, T., & Kiss, I. Z. (2013). Methodology for a nullcline-based model from direct experiments: Applications to electrochemical reaction models" <i>Computers & Mathematics with Applications</i>, <i>65</i>(10), 1633-1644. Hankins, M. J., Yablonsky, G. S., & Kiss, I. Z. (2017). Dual kinetic curves in reversible electrochemical systems. <i>PloS one</i>, <i>12</i>(3), e0173786. Hankins, M. J., Gáspár, V., & Kiss, I. Z. (2019). Abrupt and
	gradual onset of synchronized oscillations due to dynamical

	quorum sensing in the single-cathode multi-anode nickel electrodissolution system. <i>Chaos: An Interdisciplinary Journal of Nonlinear Science</i> , <i>29</i> (3), 033114.
Conferences	 2010 Midwest Regional ACS Conference – poster presentation 2011 Midwest Regional ACS Conference – poster presentation 2012 Gordon Research Conference (Dynamic Instabilities) – poster 2015 ECS conference – poster presentation 2016 ACS Spring National Conference – poster presentation 2017-2020 ILSAMP Spring Symposia – judge
Teaching Experience	 Teaching Assistant – General Chemistry Lab (2010-2011) Recording lectures for General Chemistry lecture course (2015) Large lecture experience (introductory chemistry approx. 160 students) Upper level lecture experience (physical chemistry) Lab coordinator experience (physical chemistry, engineering chemistry, and general chemistry)
Memberships/Affiliations	 American Chemical Society (ACS) Co-Chair Elect – Committee for Minority Affairs The Electrochemical Society (ECS) National Society of Black Engineers (NSBE)
Service/Volunteer Work	 Department of Graduate Education at Saint Louis University Graduate Student Orientation (registration and panel discussion) Program G.R.A.D. (Team leader) African American Male Scholars (AAMS) Initiative – Mentor African American Studies Department at Saint Louis University Help with hosting inner city schools on campus Visiting youth at inner city schools Black Faculty and Staff Association – VP of faculty Chemistry Club advisor
Project summary	 Methodology for a nullcline-based model from direct experiments: Applications to electrochemical reaction models Simulations using existing iron dissolution model displaying non-linear behavior Solving ODEs with various parameters and variables Using adaptive and PID controllers to isolated the stable and unstable manifolds of the system <u>Conclusion</u> – Trajectory of oscillations follows the nullcline of the fast variable

Production of graphene-coated nickel electrodes for improvement charge transfer behavior

- Create graphene-coated nickel electrodes
 - Chemical vapor deposition
 - Change temperature and gas
 - concentration/pressure to achieve graphene growth
 - Single and multi-layer graphene electrodes
- Characterize graphene growth using Scanning electron microscopy (SEM)
- Perform linear sweep voltammetry with graphene electrodes
- <u>Conclusion</u> behavior similar to plain nickel cathode

Optimal Waveform for the Entrainment of a Weakly Forced Oscillator

- Experiments with uniform corrosion of nickel
- Use LabView virtual instrumentation to systematically perturb the reactions at different phases
- Measured the power needed to control the corrosion rate of nickel
- Experimental data exchanged with system engineer collaborators
- <u>Conclusion</u> Open-loop control optimizes corrosion response

Awards/Grant Submissions

- FY 2017 Research Equipment and Tools Grant \$13,000
- NSF Illinois LSAMP Sub-award \$110,000
- NEH Humanities Connections Implementation Grant (under review) \$100,000