David Wisbey, Ph.D.
Assistant Professor
Education
Ph.D. in Condensed Matter Physics, University of Nebraska-Lincoln
M.S. in Physics, University of Nebraska-Lincoln
Research Interests
- Quantum computing
- Microwave resonators and amplifiers
- Solid state neutron detectors
Publications and Media Placements
Printed Archival Peer-Reviewed Journals
Vissers, M.R., Gao, J.S., Sandberg, M., Duff, S.M., Wisbey, D.S., Irwin, K.D., Pappas,
D.P. “Proximity-coupled Ti/TiN multilayers for use in kinetic inductance detectors”,
Appl. Phys. Lett. 102, 232603 (2013). DOI: 10.1063/1.4804286
Gao, J., Vissers, M.R., Sandberg, M.O., da Silva, M.C.S., Nam, S.W., Pappas, D.P.,
Wisbey, D.S., Langman, E.C., Meeker, S.R., Mazin, B.A., Leduc, H.G., Zmuidzinas, J.,
Irwin, K.D. “A titanium-nitride near-infrared kinetic inductance photon-counting detector
and its anomalous electrodynamics”, Appl. Phys. Lett. 101, 142602 (2012). DOI: 10.1063/1.4756916
Sandberg, M., Vissers, M.R., Kline, J.S., Weides, M., Gao, J.S., Wisbey, D.S., Pappas,
D.P. “Etch induced microwave losses in titanium nitride superconducting resonators”,
Appl. Phys. Lett. 100, 26, 262605 (2012). DOI: 10.1063/1.4729623
Vissers, M.R., Kline, J.S. Gao, J.S., Wisbey, D.S., Pappas, D.P. “Reduced microwave
loss in trenched superconducting coplanar waveguides”, Appl. Phys. Lett. 100, 082602
(2012). doi: 10.1063/1.3683552
Kline, J.S., Vissers, M.R., da Silva, M.S.C., Wisbey, D.S., Weides, M., Weir, T.J.,
Turek, B., Braje, D.A., Oliver, W.D., Shalibo, Y., Katz, N., Johnson, B.R., Ohki,
T.A., Pappas, D.P., “Sub-micrometer epitaxial Josephson junctions for quantum circuits”,
Superconduc. Sci. Tech. 25, 025005 (2012). doi: 10.1088/0953-2048/25/2/025005
Weides, M.P., Kline,J.S., Vissers, M.R., Sandberg, M.O., Wisbey, D.S., Johnson, B.R.,
Ohki, T.A., Pappas, D.P. “Coherence in transmon qubit with epitaxial tunnel junctions”,
Appl. Phys. Lett. 99, 262502 (2011). doi: 10.1063/1.3672000
Pappas, D.P., Vissers, M.R., Wisbey, D.S., Kline, J.S., Gao, J.S. “Two Level System
Loss in Superconducting Microwave Resonators”, IEEE Trans. Appl. Supercond. 21, 871
(2011). doi: 10.1109/TASC.2010.2097578
Vissers, M.R., Gao, J., Wisbey, D.S., Hite, D.A., Tsuei, C.C., Corcoles, A.D., Steffen,
M., Pappas, D.P. “Low Loss Superconducting Titanium Nitride Coplanar Waveguide Resonators”,
Appl. Phys. Lett. 97, 232509 (2010). doi: 10.1063/1.3517252
Wisbey, D.S., Gao, J., Vissers, M.R., Da Silva, F.C.S., Kline, J.S., Vale, L., Pappas,
D.P. “Effect of metal/substrate interfaces on RF loss in superconducting coplanar
waveguides”, J. Appl. Phys. 108, 093918 (2010). doi: 10.1063/1.3499608
Yuan, L., Wisbey, D.S., Halloran, S.T., Pappas, D.P., da Silva, F.C.S., Fardi, H.Z.
“Magnetization scissoring in aluminum/Permalloy microstructures”, J. Appl. Phys. 106,
113919 (2009). doi: 10.1063/1.3264664
Wisbey, D.S., Wu, N., Feng, D., Caruso, A.N., Belot, J., Losovyj, Y.B., Vescovo, E.,
P. A. Dowben, “Induced Spin Polarization of Copper Spin ½ Molecular Layers”, Phys.
Lett. A, 373, 484 (2009). doi: 10.1016/j.physleta.2008.11.055
Wisbey, D.S., Wu, N., Losovyj, Y., Ketsmana, I., Carusoc, A.N., Feng, D., Belot, J.,
Vescovo, E., Dowben, P.A. “Radiation Induced Decomposition of the Metal-Organic Molecule
Bis(4-cyano- 2,2,6,6-tetramethyl-3,5-heptanedionato)copper(II)”, Appl. Surf. Sci.
255, 3576 (2009). doi: 10.1016/j.apsusc.2008.09.097
Wisbey, D.S., Wu, N., Feng, D., Caruso, A.N., Belot, J., Losovyj, Y., Vescovo, E.,
Dowben, P.A. “Interface-Induced Spin Dipole Ordering of the Copper Spin 1/2 Molecule:
Bis(4-cyano-2,2,6,6-tetramethyl-3,5-heptanedionato)copper(II)” J. Phys. Chem. C 112,
13656 (2008). doi: 10.1021/jp804251b
Wu, N., Sabirianov, R.F., Duan, C.G., Mei, W.N., Wisbey, D.S., Ya. B. Losovyj, Manno,
M., Leighton, C., En Cai, Zhang, Dowben, P.A., “The Surface Stability of CoS2(100)”,
J. Phys: Condens. Matter 20, 215231 (2008). doi: 10.1088/0953-8984/20/21/215231
N. Wu, David Wisbey, T. Komesu, Z.X. Yu, M. Manno, L. Wang, C. Leighton, P.A. Dowben,
“The kinetic energy dependent effective Debye temperature for CoS2 (100)”, Phys. Lett.
A, 372, 2484 (2008). doi: 10.1016/j.physleta.2007.11.058
David Wisbey, D. Feng, M.T. Bremer, C.N. Borca, A.N. Caruso, C.M. Silvernail, J. Belot,
E. Vescovo, “Electronic Structure of a Metal-Organic Copper Spin-1/2 Bis(4- cyano-2,2,6,6-
tetramethyl-3,5-heptanedionato)copper(II)”, J. Am. Chem. Soc. 129, 6249 (2007). doi:
10.1021/ja069236e
Z.X. Yu, M.A. Van Hove, S.Y. Tong, David Wisbey, Ya.B. Losovyj, N. Wu, M. Manno, L.
Wang, C. Leighton, W.N. Mei, P.A. Dowben, “The structure of the CoS2(100)-(1X1) surface”,
J. Phys.: Condens. Matter 19, 156223 (2007). DOI: 10.1088/0953-8984/19/15/156223
N. Wu, Ya.B. Losovyj, David Wisbey, K. Belashchenko, M. Manno, L. Wang, C. Leighton,
P.A. Dowben, “The Electronic Band Structure CoS2”, J. Phys.: Condens. Matter 19, 156224
(2007). doi: 10.1088/0953-8984/19/15/156224
D.Q. Feng, David Wisbey, Ya.B. Losovyj, Y. Tai, M. Zharnikov, P.A. Dowben, “Electronic
structure and polymerization of a self-assembled monolayer with multiple arene rings”,
Phys. Rev. B 74, 165425 (2006). doi: 10.1103/PhysRevB.74.165425
D.Q. Feng, David Wisbey, Y. Tai, Ya.B. Losovyj, M. Zharnikov, P.A. Dowben, “Abnormal
Temperature Dependence of Photoemission Intensity Mediated by Thermally Driven Reorientation
of a Monomolecular Film”, J. Phys. Chem. B 110, 1095 (2006). doi: 10.1021/jp0566616
H.-J. Jeong, R. Skomski, David Wisbey, P.A. Dowben, “Magnon-plasmon interactions”,
Phys. Lett. A 341, 508 (2005). doi: 10.1016/j.physleta.2005.04.073
Ya.B. Losovyj, I.N. Yakovkin, H.-J. Jeong, David Wisbey, P.A. Dowben, “Lattice stiffening
transition in gadolinium chains in furrowed (112) surfaces”, J. Phys.: Condens. Matter
16, 4711 (2004). doi: 10.1088/0953-8984/16/26/006
Ya.B. Losovyj, David Wisbey, P.A. Dowben, “The photoemission from the gadolinium submonolayers
on W(112)”, Synchrotron Radiation in Natural Science 3, N1-2, 76 (2004).
Community Work and Service
Wisbey recently completed a postdoctoral fellowship at the National Institute of Standards and Technology in Boulder, Colorado before becoming an assistant professor at Saint Louis University. Currently, Wisbey is in the process of completing his lab which will include an adiabatic demagnetization refrigerator (ADR) and sputter deposition system. This will allow Wisbey to explore new dielectric materials and metals for use in superconducting circuits.