

 March 2023 1

Program-Level Assessment: Annual Report

Program Name (no acronyms): Computer Science Department: Computer Science

Degree or Certificate Level: BA College/School: School of Science and Engineering

Date (Month/Year): Assessment Contact: Erin Chambers

In what year was the data upon which this report is based collected? 2021-2022

In what year was the program’s assessment plan most recently reviewed/updated? 2018

Is this program accredited by an external program/disciplinary/specialized accrediting organization or subject to
state/licensure requirements? No
If yes, please share how this affects the program’s assessment process (e.g., number of learning outcomes assessed,
mandated exams or other assessment methods, schedule or timing of assessment, etc.):

1. Student Learning Outcomes

Which of the program’s student learning outcomes were assessed in this annual assessment cycle? (Please provide
the complete list of the program’s learning outcome statements and bold the SLOs assessed in this cycle.)

This year, assessment was targeted at the following two outcomes:

PLO 2: Design, implement, evaluate and test a software system that meets a given set of computing requirements.

PLO 3 - Apply computer science theory, knowledge of computer systems and software development fundamentals to
produce computing-based solutions.

2. Assessment Methods: Artifacts of Student Learning

Which artifacts of student learning were used to determine if students achieved the outcome(s)? Please describe
the artifacts in detail, identify the course(s) in which they were collected, and if they are from program
majors/graduates and/or other students. Clarify if any such courses were offered a) online, b) at the Madrid campus,
or c) at any other off-campus location.

CSCI 3200, Spring 2022: The two Theory criteria (Algorithms and Data Structures) were assessed as part of the
semester project, in which the students were asked to write a parser, either for an existing programming language or
one of their own creation. They were also required to either translate code from their language into some other
language, or execute the code directly. The Algorithms criterion was assessed by their ability to correctly implement a
parsing algorithm, and the Data Structures criterion was assessed by their ability to correctly navigate/modify the
resulting parse tree to achieve their desired goal. Program Execution was assessed with a question on the final exam
which asked the students to implement a recursive higher-order function in a purely functional way (in Racket). The
maximum score achievable from the assessment rubric would be a 3 for a completely correct implementation.

CSCI 3300, spring 2022: Students were asked to participate in an in-class assessment and were rewarded with a small
participation credit. Students were instructed to not use any internet resources to answer assessment questions.
Since the grade was based on completeness and not correctness, most of the answers likely represent students'
learning outcomes.

Two additional courses were intended to be a part of this assessment cycle. However, as they were taught by
adjuncts or visiting faculty, the requested assessments were not built into the class.

 March 2023 2

3. Assessment Methods: Evaluation Process

What process was used to evaluate the artifacts of student learning, and by whom? Please identify the tools(s) (e.g.,
a rubric) used in the process and include them in/with this report document (please do not just refer to the
assessment plan).

For CSCI 3200: The final project was collected and assessed using the rubric attached.
Final exam question assessing “Program Execution”:
“Write a higher-order function in Racket called combiner that takes three arguments: a function f and two lists x and
y. You can assume that f is a function of two arguments, and that x and y have the same length. The function should
return a new list whose kth element is the result of applying the function f to the kth elements of x and y. In Python
notation, it should return the list [f(x[0],y[0]), f(x[1],y[1]), …]. In Racket, it should work like this:
> (combiner + (list 1 2 3) (list 4 5 6))
'(5 7 9)
> (combiner * (list 1 2 3) (list 4 5 6))
'(4 10 18)
> (combiner list (list 1 2 3) (list 4 5 6))
'((1 4) (2 5) (3 6))
(the final example is like applying Python’s “zip” to the two lists)”

For CSCI 3300, the following was used for assessment:
Data Structures:

1. Pick one data structure you are using in your team project. Briefly describe the data structure and the
purpose it serves in your project.

2. Analyze the choice of this data structure for the purpose it serves in terms of program efficiency, coupling,
and/or cohesion.

3. What alternative data structure could you have used? Analyze if this alternative would be a better choice for
your project.

Security
1. Explain what the term “security” means in the context of software.
2. Describe what measures you would take to ensure that the software you produce is “secure”.

Team and Work organization
1. State and explain what you believe is the ideal team size for a:
a. Small project (about the size of our class project)
b. Medium project
2. Given your ideal team size and project requirements, explain how you would organize your team and

approach the development process to deliver the required software.

Development Tools and Workflows

1. Describe the git workflow we have utilized in this class for the team project.
2. Explain the difference between the workflow we used in this class and the workflows you have used in other

situations.
3. What considerations do you need to take into account when deciding on what workflow to use?
4. Explain how we applied various development tools to assure code quality.

4. Data/Results

What were the results of the assessment of the learning outcome(s)? Please be specific. Does achievement differ by
teaching modality (e.g., online vs. face-to-face) or on-ground location (e.g., STL campus, Madrid campus, other off-
campus site)?

For 3200:

 March 2023 3

Score Theory: Algorithms Theory: Data Structures Computer Systems:
Program execution

4 0 0 0
3 21 20 19
2 14 15 16
1 1 1 1

For 3300:

Score Theory Security Software development:
team and work organization

Software Development:
Tools and workflow

4 16 9 35 17
3 7 6 0 16
2 12 9 0 0
1 1 10 0 2

On theory, 16 students scored a 4, 7 scored a 3, 12 scored a 2, and 1 scored a 1.

5. Findings: Interpretations & Conclusions

What have you learned from these results? What does the data tell you? Address both a) learning gaps and possible
curricular or pedagogical remedies, and b) strengths of curriculum and pedagogy.

The 3200 did not garner any major surprises. This is a fairly well-developed upper-level course, so we will
continue to refine content to keep it up to date and track the results.

For 3300, the high scores on Software Development are encouraging, and reflect the fact that this is one of the
higher level courses covering this content, so students have likely seen the topics several times before and are
demonstrating mastery of concepts. For theory, the scores are a reasonable distribution, perhaps reflecting
that many take this course before their major theory class. Security is a more concerning weak point, showing
that students perhaps do not have these concepts pointed out to them early or often enough in the
curriculum.

As a result of the two classes which failed to gather assessment data, we had quite a bit of discussion about
how to handle assessment when faculty are not full time at the university, which has led to further discussions
of quality control in general on such courses.

6. Closing the Loop: Dissemination and Use of Current Assessment Findings

A. When and how did your program faculty share and discuss the results and findings from this cycle of assessment?

This discussion occurred in fall faculty meetings, as well as in administrator meetings with the associate dean
for the new college.

Primarily, the department discussion revealed the difficulty in extrapolating useful, actionable items from this
data. While useful as a sanity check, the results gathered are quite narrow, and were mostly helpful to the
faculty teaching the class.

The lower security scores have helped motivate us to re-structure undergraduate courses in the systems
sequence, which have been recommended by ABET standards as well. We are in the process of offering two

 March 2023 4

new courses, 2500 and 2510, which will introduce security concepts earlier and to all majors, and hope this
addresses some of the lack of familiarity and mastery of this concept.

B. How specifically have you decided to use these findings to improve teaching and learning in your program? For

example, perhaps you’ve initiated one or more of the following:

Changes to the
Curriculum or
Pedagogies

• Course content
• Teaching techniques
• Improvements in technology
• Prerequisites

• Course sequence
• New courses
• Deletion of courses
• Changes in frequency or scheduling of course offerings

Changes to the
Assessment Plan

• Student learning outcomes
• Artifacts of student learning
• Evaluation process

• Evaluation tools (e.g., rubrics)
• Data collection methods
• Frequency of data collection

Please describe the actions you are taking as a result of these findings.

As a result of both this year’s discussion and the growth we are experiencing, we have resolved as a
department to transition our assessment plan and discussion to a new model. Assessment will be conducted in
area clusters, focused around the following broad areas: introductory classes, ethics, software engineering,
AI/ML, theory, and systems/networking/security.

Each faculty area group is charged to begin meeting in AY22-23, to reflect on current content, agree on an
assessment plan, and report back to the faculty in department meetings. These reports will be finalized over
the course of the next year’s assessment cycle. Given the increasing size of the program, we expect the next 1-
2 years to involve significant overall revision of course sequencing and content, as well as pedagogy, since
many of these classes will transition to larger sizes in the next few years. It is likely this will necessitate that we
include smaller statical samples of direct student assessment, supplemented by overall grades in the larger
classes.

In addition, one of the more helpful pieces of assessment in discussion was in faculty reflections. The chair will
collect individual reflections in the fall for every class taught, so that faculty can share these within areas and
use them to develop improvements to the content both individually and in groups.

Finally, in the coming year we will also try to incorporate exit interviews for all students, to gain a more big-
picture and holistic view of the student experience.

If no changes are being made, please explain why.

7. Closing the Loop: Review of Previous Assessment Findings and Changes

A. What is at least one change your program has implemented in recent years as a result of previous assessment
data?

In the prior year, we noted that the variance between instructors’ artifacts made it difficult to evaluate
consistently between years. As a result, we chose narrower classes (all covered by 1 instructor) to minimize
this. This also weighed in on our plan for the coming year to narrow our assessment into groups, so faculty
collectively agree upon artifacts and goals for their classes.

In addition, we discovered issues using group projects and capstone for assessment, despite its key
contribution to our learning outcomes. This year, our capstone will be switching to being run entirely by the

 March 2023 5

Open Source with SLU Center, a new initiative partially funded by a Sloan Foundation award. As such, our
usage and model will completely change, and assessment will need to be re-thought on this portion.

B. How has the change/have these changes identified in 7A been assessed?

They have not yet been assessed, as these changes are still pending or ramping up in the next year.

C. What were the findings of the assessment?

N/A

D. How do you plan to (continue to) use this information moving forward?

As mentioned in A, this information has been key to devising a new strategy for managing assessment, and
hence remain a critical part of the process.

IMPORTANT: Please submit any assessment tools (e.g., artifact prompts, rubrics) with this report as separate

attachments or copied and pasted/appended into this Word document. Please do not just refer to the assessment
plan; the report should serve as a stand-alone document. Thank you.

PLO 3 - Application of Theory, Systems, and Software Development Fundamentals

Outcomes

Graduates of the program will have an ability to...

BA-CS, BS-CS, MS-CS Apply computer science theory, knowledge of computer systems and software development fundamentals to produce
computing-based solutions.

Application of Theory Fundamentals

Criterion 4: Exemplary 3: Accomplished 2: Developing 1: Beginning

Data
Structures

Student can critically evalu-
ate the use of data structures
in real contexts and adapt or
create data structures to ac-
complish or optimize problem
solutions.

Given a problem statement and
a data structure, the student
can implement or describe
a concrete implementation
using the data structure to
solve the problem.

Given a problem statement and
a data structure, the student
can reason about tradeoffs
and articulate how the data
structure solves the problem.

Given a problem statement and
a data structure, the student
can describe the data struc-
ture and generalize how the
data structure might assist in
solving the problem.

Algorithms Student can critically evalu-
ate the use of algorithms in real
contexts and adapt or create
algorithms to accomplish or op-
timize problem solutions.

Given a problem statement
and an algorithm, the student
can implement or describe
a concrete implementation
using the algorithm to solve the
problem.

Given a problem statement and
an algorithm, the student can
reason about tradeoffs and
articulate how the algorithm
solves the problem.

Given a problem statement and
an algorithm, the student can
describe the data structure
and generalize how the algo-
rithm might assist in solving
the problem.

Note: A score of zero should be given for students that do not meet the basic standard.

Notes on the above rubric

� This learning outcome evaluates the students’ process of applying learned knowledge and skills to a specific problem, not necessarily the
specific skills and learned knowledge itself.

� PLO3 is a broad learning outcome that applies to many courses. This rubric attempts to be general enough so that elements may be
applicable to any course covered under PLO3. It is not intended to be specific to the Theory courses. For example, an Operating Systems
course can include discussion of specific algorithms and data structures used in the OS, or Computer Architecture can include discussion
of how the assumption of sequential execution changes the design of software algorithms from inherently parallel hardware circuit design.

1

Application of Computer Systems Fundamentals

Criterion 4: Exemplary 3: Accomplished 2: Developing 1: Beginning

Program
Execution

Student can critically eval-
uate execution management
strategies in real contexts and
adapt or create new strate-
gies to accomplish or optimize
system goals.

Student can implement or
describe a concrete imple-
mentation of different code ex-
ecution strategies to achieve de-
sired system-level outcomes.

Student can reason about
how and when a system ex-
ecutes code to accomplish its
goals. Students can compare
and contrast different systems
and explain why they manage
code execution differently.

Student can describe how
programs, processes, threads,
tasklets, or other runnable code
is executed on hardware in
an abstract, idealized manner.
Student can describe mecha-
nisms and algorithms that man-
age computing time as a re-
source.

Memory and
Data
Mangement

Student can critically evalu-
ate data management strate-
gies in real contexts and adapt
or create new strategies to
accomplish or optimize system
goals.

Student can implement or
describe a concrete im-
plementation of different
data management strategies
to achieve desired system-level
outcomes.

Student can reason about
how a system manages data
storage and movement to ac-
complish its goals. Students
can compare and contrast
different systems and explain
why they manage data differ-
ently.

Student can describe how data
management systems (memory,
cache, databases, etc.) function
in an abstract, idealized man-
ner. Student can describe how
computer data is managed as a
resource.

Networking Student can critically eval-
uate networking strategies in
real contexts and adapt or
create new strategies to ac-
complish or optimize system
goals.

Student can implement or
describe a concrete imple-
mentation of different net-
worked communication strate-
gies to achieve desired system-
level outcomes.

Student can reason about
how distributed systems use
communication to accomplish
their goals. Student can com-
pare and contrast different
systems and explain why they
manage communication differ-
ently.

Student can describe how net-
work hardware and software op-
erates in an abstract, idealized
manner. Student can describe
protocols and algorithms that
manage the transfer of informa-
tion between systems.

Security Student can critically evalu-
ate security strategies in real
contexts and adapt or create
new strategies to accomplish or
optimize system goals.

Student can implement or
describe a concrete im-
plementation of different
computer security strategies
to achieve desired system-level
outcomes.

Student can reason about
how secure systems accomplish
their goals. Student can com-
pare and contrast different
systems and explain why they
manage security differently.

Student can describe how dig-
ital systems are secured in
an abstract, idealized man-
ner. Student can describe pro-
tocols, procedures, and algo-
rithms that achieve security ob-
jectives and allow trust in com-
puter systems.

Note: A score of zero should be given for students that do not meet the basic standard.

2

Notes on the above rubric

� This learning outcome evaluates the students’ process of applying learned knowledge and skills to a specific problem, not necessarily the
specific skills and learned knowledge itself.

� PLO3 is a broad learning outcome that applies to many courses. This rubric attempts to be general enough so that elements may
be applicable to any course covered under PLO3. It is not intended to be specific to the Computer Systems courses. For example,
the Algorithms course could incorporate elements of ”Program Execution” by analyzing an algorithm’s Big-O running time under two
models: one where a single instruction occurs per time step (sequential execution) versus another where all possible instructions occur
per time step (infinitely parallel execution). Or, the Algorithms course could incorporate elements of ”Memory and Data Management”
by discussing working-set-size and in-cache versus out-of-cache algorithms or in-core and out-of-core algorithms.

� This rubric attempts to hit Computer Systems concerns at a high and low level. For ”Memory and Data Management” a programming
course may talk about how the Java garbage collector manages memory, an architecture course may talk about how the CPU cache interacts
with memory, an OS course may talk about virtual memory and paging, a database course may talk about database organization, and a
security course may talk about where data is encrypted and decrypted.

� In many courses these four dimensions of computer systems will interrelate to one another, even if there are apparently one or two
primary dimensions. For example, a networking or distributed systems course might talk about efficiently distributing computation and
data storage across client and server, subject to the security concerns of who is trusted to do what kinds of operations.

3

Application of Software Development Fundamentals

Criterion 4: Exemplary 3: Accomplished 2: Developing 1: Beginning

Team
and Work
Organization

Student can critically eval-
uate software development
strategies in real contexts and
adapt or create new strate-
gies to accomplish or optimize
development goals.

Student can describe a con-
crete implementation of dif-
ferent software development
strategies to achieve desired de-
velopment outcomes.

Student can reason about
how software developers accom-
plish their goals. Student can
compare and contrast differ-
ent organizations or models and
explain why they approach de-
velopment differently.

Student can describe how
software is developed in an
abstract, idealized manner.
Student can describe poli-
cies, procedures, models, and
methodologies that support
software development.

Development
Tools and
Workflows

Student can critically eval-
uate the use of development
tools and workflows in real con-
texts and select or create dif-
ferent tools or workflows to ac-
complish or optimize develop-
ment goals.

Student can use different devel-
opment tools and workflows to
facilitate software development
outcomes.

Student can reason about
how different development tools
and workflows accomplish their
goals. Student can compare
and contrast different tools or
workflows.

Student can describe how de-
velopment tools support work
in an idealized, abstract man-
ner. Student can describe how
development tools and their
workflows are used to support
good software development.

Note: A score of zero should be given for students that do not meet the basic standard.

Notes on the above rubric

� This learning outcome evaluates the students’ process of applying learned knowledge and skills to a specific problem, not necessarily the
specific skills and learned knowledge itself.

� PLO3 is a broad learning outcome that applies to many courses. This rubric attempts to be general enough so that elements may be
applicable to any course covered under PLO3. It is not intended to be specific to the Software Engineering courses. For example, all
classes that incorporate group work can ask students to reflect on their group work organization and process, and ask what could be done
differently next time. Similarly, all classes that involve programming projects can evaluate the use of Git as a software development tool
as well as identifying specific processes or practices that makes that kind of work easier.

4

	computer-science-ba-report-21-22.pdf
	PLO3_Application.pdf

