Laboratory Safety & Compliance

Saint Louis University
Environmental Health and Safety
Research Integrity and Safety Group
Office of the Vice President for Research
South Campus – Caroline C305

Bloodborne Pathogens Awareness Training
Infectious Materials Shippers Training
Radiation Safety Orientation
BSL-3 Facility Awareness Training
ABSL-3 Facility Awareness Training
Select Agent and High Containment Awareness Training
Laser Safety Training

Other Training Offered

What are the Regulatory and Training Requirements For Laboratory Employees?

Bloodborne Pathogens Standard (29 CFR 1910.1030)
- Applies to all employees who have a risk of occupational exposure to blood or other potentially infectious materials (OPIM)
- "Bloodborne Pathogens Awareness" training
 - Required annually
 - Available online
- Exposure Control Plan (available online)

Occupational Safety and Health Administration

Laboratory Standard (29 CFR 1910.1450)
Occupational Exposure to Hazardous Chemicals in Laboratories
 - Chemical Hygiene Plan (available online)
 - Discloses toxic and hazardous substances in the workplace
 - Includes requirements for training, labels, safety data sheet retention, and exposure monitoring
Globally Harmonized System (GHS)
 - Pictograms
 - Signal Words
 - Warning – less severe
 - Danger – more severe
 - Standardized Safety Data Sheets (SDS)

GHS - Hazard Pictograms and correlated exemplary Hazard Classes
Chemical Names
- No abbreviations
- List all components

Chemical Concentration (if applicable)

Hazards

Exposures (Biological, Chemical, or Radioactive)
- Inhalation (Breathe in a hazard)
 - Remove exposed personnel to fresh air
- Ingestion (Swallow a hazard)
 - Improperly stored/handled items
 - Inadequate handwashing before eating
 - Contact Public Safety immediately (977–3000)
- Skin or Eye Contact (Absorbed through direct skin or eye contact)
 - Improperly stored/handled items
 - Splashes/spills
 - Wash/flush the area with water
- Injection (Contaminated object breaks the skin)
 - Needles, broken glass, animal bites/scratches, etc.
 - Wash the area with soap and water

Personal Protective Equipment
- Eye Protection
 - Wear what is appropriate for the hazard (safety glasses, goggles, etc.)
- Gloves
 - Nitrile, Latex, Vinyl, etc.
- Lab Coats
- Respiratory Protection
 - Medical Questionnaire
 - Respirator Fit Test
 - Respirator Training
- Closed-Toed Shoes
- Pants
 - No shorts in laboratory

Safety Data Sheet (SDS)

Labeling Chemical Containers
- Chemical Names
 - No abbreviations
 - List all components
- Chemical Concentration (if applicable)
- Hazards

Chemical Exposure Monitoring
- Exposure monitoring is available for all employees working with chemicals
- Chemical Monitoring Devices (badges) are used to monitor an employee’s work exposure
- Results are compared to the OSHA Permissible Exposure Limits (PEL’s) that are found on the Safety Data Sheets
- Contact EHS with any Indoor Air Quality concerns

Inhalation (Breathe in a hazard)
- Remove exposed personnel to fresh air

Ingestion (Swallow a hazard)
- Improperly stored/handled items
- Inadequate handwashing before eating
- Contact Public Safety immediately (977–3000)

Skin or Eye Contact (Absorbed through direct skin or eye contact)
- Improperly stored/handled items
- Splashes/spills
- Wash/flush the area with water

Injection (Contaminated object breaks the skin)
- Needles, broken glass, animal bites/scratches, etc.
- Wash the area with soap and water

Eye Protection
- Wear what is appropriate for the hazard (safety glasses, goggles, etc.)

Gloves
- Nitrile, Latex, Vinyl, etc.

Lab Coats

Respiratory Protection
- Medical Questionnaire
- Respirator Fit Test
- Respirator Training

Closed-Toed Shoes

Pants
- No shorts in laboratory

Hierarchy of Controls
- Elimination
 - Physically remove the hazard
- Substitution
 - Replace the hazard
- Engineering Controls
 - Isolate people from the hazard
- Administrative Controls
 - Change the way people work
- PPE
 - Protect the worker with Personal Protective Equipment
Personal Protective Equipment

Glove Use

- Choose proper gloves
- Inspect gloves before and during use
- All gloves are porous – **CHANGE REGULARLY**
- **Do not** re-use disposable gloves
- **Do not** wear gloves outside the laboratory
- Wash hands regularly

Laboratory Inspections

- Inspection forms are available on the EHS website
 - Review the inspection items regularly
 - Keep compliance records in the lab
 - Training certificates, Safety Data Sheets
 - A fume hood test will be conducted annually

Laboratory Hazard Signage

- Contact EHS to update signage
- Lab Contact can be a lab phone number
- Emergency Contact should be a cell number reachable 24 hrs.

Chemical Storage in the Lab

- Designate storage for food and beverages outside of the lab
- Keep hazardous chemicals below eye level
- Store incompatibles in separate containment
- Use designated storage cabinets for acids and flammables
- **NEVER** store chemicals on the floor
- Check on the condition of your chemicals periodically

Gas Cylinders

- Ensure contents of cylinders are properly identified
- Keep cylinders capped until gas is ready to be used
- Keep gas cylinders upright and secure at all times
- Use cylinder carts to move cylinders – **Do Not** “Roll” or “Walk” cylinders
- **Do not** force connection fittings or tamper with safety devices in cylinder valves or regulators

Fume Hood Guidelines

- Keep sash at the appropriate height
- Keep items six inches from the front
- Fume hoods are certified annually by EHS
- Keep adequate work space clear
- All containers must be capped, labeled, and in good condition
- Do not block the opening at the back of the hood
- Keep the fume hood organized and clean regularly
Safety Shower / Eyewash Station

- Document weekly inspections of the eyewash in your laboratory
- Ensure it is functioning properly
- Allow debris to be flushed from the plumbing weekly and after building water has been shut off
- Do not block access to the safety shower/eyewash
- Facilities Service Request
 - myslu.slu.edu
 - 977-2955 (Urgent Requests)

Laboratory Specific Training

- Must be completed and documented for all personnel working in the lab
- Identify hazards and safety features present in your lab
- Review SOPs for work with certain chemicals:
 - carcinogens
 - cryogens
 - gas cylinders

ChemKlenz

- Currently available in all buildings with laboratories – look for the green wall mounted bottle holders
- Use ChemKlenz for small spills and contact EHS for disposal instructions and to report the spill
- Do not use for mercury, biological, or radioactive spills
- Waste is considered hazardous and must be disposed of by Environmental Health and Safety
- For large spills, contact DPS at 314-977-3000

Mercury Thermometer Trade-In

Hazardous Waste

- Any waste (liquid, solid, gas, sludge) that because of its quantity or characteristics may pose a threat to human health or the environment
- Items that are ignitable, corrosive, reactive, toxic, or biological in origin
- Examples include, but are not limited to:
 - Flammable and non-flammable organic solvents
 - Corrosives – acids & bases (caustics)
 - Oxidizers – nitric acid, nitrates, hydrogen peroxide, sulfuric acid
 - Reactives – hydrides, azides, picric acid
 - Toxics – poisons, mutagens, carcinogens, dyes and stains
 - Controlled substances
 - Heavy metals – Ag, As, Ba, Cd, Cr, Pb, Hg, Se
 - Acutely hazardous chemicals
 - UV germicidal lamps/sodium vapor lamps
 - Paper and cloth rags used to clean solvent spills
 - Photo-fixer, photo-developer, x-ray film

How do I Label Chemical Waste Properly?

- As the generator, you are responsible for chemical waste in your satellite accumulation area. It is your responsibility to:
 - Determine what is “HAZARDOUS WASTE” and label the container properly.
 - Include all the chemical components (solvents, buffers, etc.)
 - Include the accumulation start date
 - Request a chemical waste pickup before starting a second container.
Waste Removal Requests

- Online Chemical Waste Removal Form
- chemwaste@slu.edu
 - Chemical waste questions
 - Send additional info (SDS, content info, etc.)

Laboratory Waste Disposal

- All Hazardous Waste Must Be Collected by Environmental Safety for proper disposal
- Do NOT put hazardous chemicals down sewer drain!
- Dilution/Evaporation is NOT the solution !!!

CONTACT ENVIRONMENTAL SAFETY FIRST!!

Laboratory Waste Disposal

Approved for Regular Trash Disposal
- Paper / Paper Towels / Plastic
- Gloves (not contaminated)
- Triple-rinsed chemical containers
- Non-hazardous solid chemicals
- Lab ware, pipette tips, etc. free of visible chemical contamination
- Glass Box - Clean glass and clean broken glass (Must be labeled appropriately for housekeeping staff)

Approved for Drain Disposal
- Non-hazardous salt solutions
- Bleach used as a disinfectant
- Buffers (depending on components)
- Non-hazardous chemicals
- Chemicals released during a laboratory process that deems the collection of the chemical impossible or unsafe

Electronics Recycling

- Alkaline Batteries
- Other Batteries
- Equipment

What Can Go Into Glass Disposal Boxes?

- No Mercury Instruments
- No Mercury Containing Batteries
- No Metal Sharps
- Clean Glass (Broken or Unbroken)

SAINT LOUIS UNIVERSITY Emergency Procedure Guide

- Medical Emergency
- Gas Leak or Chemical Spill
- Biological or Radiactive Materials
- Fire
- Violent Intruder
- Severe Storms
- Earthquake
- Campus Safety
Types of Fires

- Class A – Combustible solids (paper, wood, etc)
- Class B – Flammable liquids and gases
- Class C – Electrical (computers, lab equipment, etc)
- Class D – Metals (not common)

Fire Safety Reminders

- Corridors/Stairways
 - Designated safe areas for egress
 - Must not be used for storage
 - Remove combustible materials and chemicals
 - Do not stage equipment in the hallways when being received/moved

- Know location (before an emergency):
 - Evacuation route
 - Fire extinguishers
 - Full stations (may not be on every floor)
 - Fire exits / Evacuation routes

- Plan ahead!

- Keep fire doors closed

How to use a Fire Extinguisher

Remember P.A.S.S.

- Pull the pin
- Aim the nozzle at the base of the fire
- Squeeze the handle
- Sweep side to side

** Fire extinguishers are provided for your protection and voluntary use for actual emergencies **

General Radiation Safety Awareness

- Restricted Areas
 - These signs indicate restricted areas where radioactive materials are used and stored.
 - Do not be afraid to enter these areas; take appropriate precautions and be respectful of the presence of radioactive material.

- Radioactive Work Areas and Waste Storage Areas
 - Radioactive work areas and waste storage areas are labeled for your safety.
 - Do not attempt to handle equipment or labware in radioactive work areas unless you are trained and authorized.
 - Do not lean on countertops in radioactive work areas.
 - Do not attempt to handle radioactive waste or containers unless you are trained and authorized.
 - Do not handle any items marked “RADIOACTIVE” whether handwritten or marked with yellow/magenta trefoil labels unless you are trained and authorized to do so.

- Radioactive Packages
 - You may not order radioactive materials without authorization.
 - Do not attempt to open a radioactive package unless you are trained and authorized to do so AND it has been processed by Radiation Safety.

- Security
 - Make sure doors are closed and locked when leaving a restricted area.

- Food and Drink
 - Do not consume or store food and drink in restricted areas.
 - This includes, applying cosmetics, lip balm, and contact lenses.

- Radiative Spills
 - If you suspect radioactive materials have been spilled, stay where you are and call for assistance, 314-977-3200.
 - Do not attempt to leave area until cleared to prevent the spread of radioactive contamination.

- Questions: Contact Radiation Safety
 - 314-977-8609 or https://slu.edu/ehs

Minors in Labs

- Applies to all minors (STARS and Non-STARS) in the laboratory.
- Must be approved by EHS

<table>
<thead>
<tr>
<th>Minors in Labs Documents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy on Minors in Laboratories</td>
</tr>
<tr>
<td>Form A - Request for Approval of Research Project Involving Minor Participants in Laboratories</td>
</tr>
<tr>
<td>Form B - Parent/Guardian Consent for a Minor in Laboratories</td>
</tr>
<tr>
<td>Minors in Laboratories - Safety Steps by Step Guide to Approved and Unapproved</td>
</tr>
<tr>
<td>STARS Students at SLU - How to Obtain an ID Badge</td>
</tr>
<tr>
<td>CHIP Cardboard Form - Medical History Questionnaire</td>
</tr>
</tbody>
</table>
Questions / Comments
Renee Knoll
Asst. Director and Chemical Hygiene Officer
renee.knoll@slu.edu or 314–977–6884

Greg Buettner
Sr. Chemical Safety Specialist
gregory.buettner@slu.edu or 314–977–6882

Connor Magner
Environmental Safety Technician
connor.magnersackman@slu.edu or 314–977–6795
chemwaste@slu.edu ehs@slu.edu

Biological Safety

Biosafety training outline

- Risk groups and biosafety levels
- Work practices and procedures
- Regulatory aspects, standards & guidelines

Risk Groups and Biosafety levels

Risk Groups (RG) and Biosafety levels (BSL)

Definitions

- **Biohazard** – An agent of biological origin that has the capacity to produce harmful effects on humans or the environment.

- **Biosafety** – The application of knowledge, techniques and equipment to prevent personal, laboratory and environmental exposure to potentially infectious agents or biohazards.

Laboratory Acquired Infections (LAI)

Exposures:
- Most are acquired via inhalation
- Other: ingestion, inoculation (sharps), splashes, direct & indirect contact

51% LAIs occur in research laboratories

- **Viral**:
 - 16% from clinical labs
 - 70% from research labs
 - 12% from animal related activities

- **Bacterial**:
 - 76% from clinical labs
 - 0% from research labs

- **Other**:
 - Parasites
 - Mycob
 - Fungi
 - Prions
The Risk Group (RG) of an agent is an important factor to be considered during the biosafety risk assessment process. Biological agents and toxins are assigned to their relevant Risk Groups based on their ability to cause disease in healthy human adults and spread within the community. Biosafety Levels (BSL) are ways to contain the agent facilities, safety equipment, practices, PPE, etc. Once risk is assessed then the appropriate BSL is determined. Risk Groups are used in risk assessment, BSL are used in risk management.

Risk Groups & Biosafety Levels
- RG1 - agents not associated with disease in healthy adults
 - RG1 ex. - adeno-associated viruses (AAV), Baculoviruses
- RG2 - agents associated with human disease which is rarely serious
 - preventative/therapeutic interventions are often available
 - RG2 ex. - human origin cells (IBP), influenza, Zika virus
- RG3 - agents associated with serious or lethal human disease
 - preventative/therapeutic interventions may be available
 - RG3 ex. - SARS-CoV-2, Mycobacterium tuberculosis, SARS
- RG4 - agents cause serious or lethal human disease
 - preventative/therapeutic interventions not usually available
 - RG4 ex. - Ebola, Marburg, Lassa

Safe Work Practices for all Biosafety Levels
- Wash hands after work, when removing gloves, before leaving lab
- No eating, drinking, applying cosmetics, handling contact lenses
- No plants or animals in laboratories that are not part of the research
- Maintain labs in clean, orderly fashion
- Limit access to lab when work with organisms is in progress
- Use good microbiological techniques (No mouth pipetting)
- Use plastic instead of glass when possible
- Dispose of sharps properly
- Plan your work
 - Know in advance what you are working with

NIH Risk Groups
- RG1 - agents not associated with disease in healthy adults
 - RG1 ex. - adeno-associated viruses (AAV), Baculoviruses
- RG2 - agents associated with human disease which is rarely serious
 - preventative/therapeutic interventions are often available
 - RG2 ex. - human origin cells (IBP), influenza, Zika virus
- RG3 - agents associated with serious or lethal human disease
 - preventative/therapeutic interventions may be available
 - RG3 ex. - SARS-CoV-2, Mycobacterium tuberculosis, SARS
- RG4 - agents cause serious or lethal human disease
 - preventative/therapeutic interventions not usually available
 - RG4 ex. - Ebola, Marburg, Lassa

Biosafety Levels (BSL)

<table>
<thead>
<tr>
<th>BSL-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Laboratories</td>
</tr>
<tr>
<td>LOWEST</td>
</tr>
<tr>
<td>Work is typically done on the open bench</td>
</tr>
<tr>
<td>- Standard microbiological practices</td>
</tr>
<tr>
<td>- General laboratory safety & hand washing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BSL-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Laboratories</td>
</tr>
<tr>
<td>Medium</td>
</tr>
<tr>
<td>Specific agent training for the lab</td>
</tr>
<tr>
<td>- Biosafety cabinets (BSC) use</td>
</tr>
<tr>
<td>- Prevention of aerosol/splash exposures</td>
</tr>
<tr>
<td>- PPE, primary & secondary containment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BSL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specialized training and approval required</td>
</tr>
<tr>
<td>- Additional PPE, all work within BSC</td>
</tr>
<tr>
<td>HIGHEST</td>
</tr>
<tr>
<td>Not at SLU (specialized labs, suits, etc.)</td>
</tr>
</tbody>
</table>

Work Practices and Procedures

Biosafety Concepts

Standard Microbiological Practices
- Awareness of potential hazards
- Trained & proficient in techniques
- Supervisors responsible for:
 - Appropriate Laboratory facilities
 - Personnel & Training
- Special practices & precautions
 - Occupational Health Programs
Biosafety Issues

The BMBL

Safety Equipment
- Minimize exposure to hazard
 - Prevent contact/Contain aerosols
- Primary Containment Barrier
 - Biological Safety Cabinets
- Engineering controls/equipment
- Personal Protective Equipment (PPE)
 - Gloves, gowns, respirator, face shield, shoe covers
- Covered or ventilated animal cage systems

Sharps Safety
- Approved sharps containers are puncture & leak-resistant and should be used for the disposal of metal sharps such as scalpels, razor blades and needles.
- Contaminated glass should also be placed in the sharps container for safe disposal.
- The sharps container should be near the working area to avoid carrying sharps.
- Do not recap needles.
- If metal sharps are found in the regular trash – Housekeeping will not remove trash & will contact OEHS
- Do not leave exposed sharps on the bench.

Proper Biowaste Handling

ALL BIOLOGICAL MATERIAL MUST BE DISPOSED OF PROPERLY

- Solid Waste (two options):
 - Stericycle (biohazard boxes)
 - Autoclave (steam sterilization)
- Liquid biological waste:
 - 1:9/10% bleach concentration (final concentrations)
 - Hold 24 hours, then pour down the sink with running water

Stericycle Box Handling
- Biohazard packaging materials (boxes, bags, manifests and labels) are obtained from EHS
- DOT requires twisting & tying the red bag in a single knot
 - 5 minutes - upside down - holding water
 - 45 Lbs. (lift with one hand test).
- Close and tape box as per instructions of box
 - No red bag should show once the box is sealed.
- Affix Stericycle label on the side of the box in the marked area with date visible
 - Submit biowaste pickup request through EHS ‘Biological Waste Pickup’ form

Autoclaved solid waste
- Biohazardous waste should be collected in a red biohazard bag and autoclaved.
- Autoclaves need to validated weekly and results documented.
- Autoclaved waste should be then placed into a black plastic trash bag
 - Then it can then go into the regular trash.
- Sharps still need to be placed in a sharps approved container.

Biohazard Labels
- OSHA requires biohazard labels to be affixed to containers, refrigerators and freezers containing human BBPs or OPIMs
 - 29 CFR 1910.1030(g)(1)(i)(A)
- Labels shall be fluorescent orange or orange-red with lettering and symbols in a contrasting color.
- BSL-2 (agents in use) and BSL-3 laboratories require biohazard labels as noted in the BMBL, 6th ed., 2020.
Surface Decontamination

- 10% Bleach, 70% Ethanol
- Halogens (Sodium and Calcium hypochlorite)
- Quaternary Ammonium Compounds
- Aldehydes (Formalin)
- Hydrogen peroxide

BOTTOM LINE – Use a disinfectant that is proven to provide kill of the agent with which you’re working.

Aerosol Generating Procedures

- Pipetting (vigorous mixing)
- Mixing & vortexing
- Centrifugation
- Inoculating biochemicals or blood culture bottles
- Pouring of specimens
- Flaming loops
- Open bench subculturing
- Hot loop into broth or media
- Loading syringes
- Flow cytometry & sorting
- Lasers
- Grinding and homogenizing
- Opening lyophilized cultures
- Entering / opening vessels at non-ambient pressures
- Bone saw at autopsy
- Sonication

Vacuum use

- Begin with fresh bleach in the flask
 - Final concentration should be 10% bleach
- Empty frequently to avoid contamination
- Label the contents
- HEPA filters should be in–line to protect the house vacuum and a second overflow flask is also useful
- Use coated glass and/or secondary containment if stored on the floor

Biosafety Cabinet Use

- BSCs must be tested and certified at the time of installation, any time it is moved, and at least annually.
- No flammable compressed gas
 - Flames disrupt air flow and may damage HEPA filter
- Keep vents clear of tools/debris
 - This prevents proper airflow
- Use appropriate disinfectant
- Wear PPE (gloves, gown/coat)

Research & Regulatory Oversight

- Occupational Safety and Health Administration (OSHA)
- Bloodborne Pathogens and the Laboratory Standard for working with SA Toxins
- Department of Health Human Services (DHHS): Select Agent Program
- Centers for Disease Control and Prevention (CDC)
 - Permit requirements
- United States Department of Agriculture (USDA): Select Agent Program
 - Animal Plant and Health Inspection Service (APHIS)
 - Permit requirements
- Department of Transportation (DOT): Ground Shipping
- International Air Transport Association (IATA): Air Shipping
- NIH Guidelines for Research Involving Recombinant DNA Molecules
Registration of Research Protocols

- Institutional Biosafety Committee (IBC)
 - Biological Agents, recombinant or synthetic nucleic acids (rsNA), biological toxins, prions & select agents
- Radiation Safety Committee (RSC)
 - Radiological
- Institutional Animal Care and Use Committee (IACUC)
 - Animals
- Institutional Review Board (IRB)
 - Humans
- Conflict of Interest in Research Committee (COIRC)

ICH and IBC Protocols

- Research Institutions with NIH funding must register experiments using rsNA molecules with the Institutional Biosafety Committee (IBC).
- The IBC has responsibility for the oversight, review and approval of all biological research conducted at Saint Louis University and institutional compliance with federal, state and local requirements governing the use of biological materials.
- IBC protocols are active for five years
 - Annual continuing reviews (per NIH guidelines)
 - Ensures personnel, locations, etc. are up-to-date.
- Questions regarding IBC submissions, renewals, or continuing reviews can be emailed to eIBC@slu.edu, or contact Patricia Osmack, IBC Coordinator

Shippers Training

- Training is required for anyone involved in the shipping or transport process
- Required Shipper’s Training Includes:
 - General Awareness
 - Safety
 - Function Specific
 - Security Awareness
 - Dangerous Goods readied for shipment are a security risk and must be secured from unauthorized access prior to shipment.
 - All visitors must be escorted in areas where packaged Dangerous Goods await shipment.
 - Keep laboratory doors and cabinets holding dangerous goods closed and locked.
 - Call DPS 314-977-3000 for any security issues.

Shipping Hazardous Materials

- Dangerous goods
 - must be shipped in accordance with 49 CFR, Parts 171–180.
- Biological agents
 - Must be shipped following DOT and/or IATA guidelines.
 - Contact EHS with any questions about specific online training requirements.
- Shipping Chemicals
 - Please contact EHS prior to shipping ALL CHEMICALS

Occupational Health Program (OHP)

Awareness & Enrollment

- What is the OHP?
 - The OHP is a medical surveillance program for assuring that employees are monitored for occupational exposures to hazardous materials (biological, chemical, or radioactive).
- How do I enroll?
 - If you choose to participate in the OHP, you will be provided an OHP Medical Questionnaire for you to complete.
 - If you wish to work with animals, the PI will also provide a “Safe Handling of Animals for OHP” form for you to complete.
 - After you complete the form you must submit it confidentially to Employee Health (since it contains personal health information).
- Can I opt out?
 - If you choose not to participate in the OHP, you must notify the SLU Employee Health Physician in writing using the “Informed Consent Declination Documentation” form that is the final page of the OHP Medical Questionnaire.
 - Opting out of the OHP may prevent you from participating in certain research that is part of your job. This should be discussed with your supervisor.

Lab-specific Training

- All Saint Louis University laboratories are required to have and document Laboratory Specific Training for all faculty, staff, students, and volunteers working in the laboratory.
- Principal Investigators and Managers in labs that work with any biohazardous agent should:
 - Explain symptoms of accidental exposures to employees
 - Encourage/require self-reporting in the event of illness
 - Encourage/ require reporting of any spill or release of an agent to the supervisor and to EHS.
Hazardous Exposure or Spill

› Flush the contaminated area with water for ≥15 minutes
› Evacuate the immediate area around a spill
 • Avoid leaving and tracking the spill to other areas
› Call Public Safety at 314–977–3000
› Provide Important Information:
 • Specific hazard name, exact location, amount spilled, phone #
› Avoid hazard inhalation, absorption and/or contamination

NEVER leave a message for an emergency !!!

Sharps Injuries

› Notify your supervisor immediately, if available.
› Determine risk of exposure to a biological agent.
› Report incident immediately to Employee Health or the emergency room to determine treatment.
› File an incident report as instructed by Employee Health.
› Follow Employee Health’s recommendations for follow-up treatment.

Select Agents and Toxins Awareness

› Restricted work, unless approved by RO, IBC, and CDC
› YOU MUST BE APPROVED TO ACCESS AGENT
› Covers ALL who have access to Select Agents and Toxins
› High-level of federal-level security and scrutiny
› Extensive training to work with agents

RO: Christopher Eickhoff
Caroline Bldg. Rm. 305D - (314) 977-6888
ARO: Patricia Osmack
Caroline Bldg. Rm. 305C - (314) 977-6897

Environmental Health and Safety Website
http://slu.edu/EHS

Contact Employee Health:
2015 Vista Ave.
St. Louis, MO 63110
Phone: 314-257-8400
Fax: 314-257-8401
After Hours Contact:
Call SLU Health Saint Louis University Hospital and ask for Saint Louis University Employee Health’s on call staff member

Contact Us!

› Christopher Eickhoff
 • Biological Safety Officer and Responsible Official (RO)
 • Phone: 977–6888
 • christopher.eickhoff@health.slu.edu

› Patricia Osmack
 • IBC Coordinator and Alternate Responsible Official (ARO)
 • Phone: 977–6897
 • patricia.osmack@slu.edu