
Saint Louis University Engineering Controls

What are Engineering Controls?

If a hazardous material cannot be eliminated or substituted, engineering controls are the first line of defense to isolate people from the hazard.

Chemical Fume Hoods

- Used to contain and exhaust hazardous fumes, gases, vapors, or dusts.
- Should be kept clean and clear of items that may impede proper air flow and normal operation.
- Tested by EHS annually to ensure they are working properly. This includes:
 - Linear face velocity measurements
 - Visual inspection for excessive clutter
- Chemical fume hoods used for volatile radioactive materials are tested quarterly.

Downdraft Tables and Canopy/Portable Fume Exhausts

Downdraft Tables:

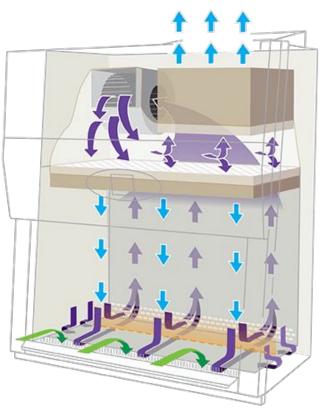
- Provide ventilated work surfaces
- All stainless steel construction
- May include electrical receptacles and/or sink spray assembly

Canopy Hoods:

 Designed to vent non-toxic materials such as heat, steam and nuisance odors.

Portable Fume Exhaust:s

 Useful for laboratory benches when fume hoods are not an option.



Biological Safety Cabinets (BSC)

- When used properly, BSCs help protect users from exposure to biological agents.
- BSCs work by providing an air curtain (vertical laminar airflow) between the user and the work environment.
 - Air is moved through a HEPA filter before recirculation within the cabinet or exhausted back into the room or into a permanently connected exhaust duct.

Class II, Type A2 Air In-flow 70% Recirculated vs. 30% Exhausted

Biological Safety Cabinets (BSC)

- BSCs must be tested and certified:
 - At the time of installation
 - Annually
 - Any time they are moved
- Do not use flammable gases in BSCs.
- Keep vents clear of tools, etc (prevents proper airflow).
- BSCs are <u>not</u> a storage location.
 - Remove items that are not necessary for the tasks of the day
- Use an appropriate disinfectant after each use.
- Contact EHS with any questions regarding purchase, testing, or use.

HVAC Design - Doisy Research Center

- HVAC system is monitored using Metasys Building Automation Systems (BAS).
- BSL-2 labs are single-pass, non-recirculating with 100% supplied outside air.
- BSL-3 labs and ABSL3 facilities have negative directional airflow.
 - Fresh air enters and exits the A/BSL-3 spaces through air supply ducts and exhaust ducts.
 - Exhaust air passes through a HEPA filter bank and is dispersed from the roof via strobic fans.
 - Relative air pressures are displayed near entrances using:
 - Magnehelic gauges (measurement of directional airflow)
 - Ping pong ball system (visual indicator of directional airflow)
 - Red strobe lights are a visual indicator of an air handling failure.

Centrifuge Rotors and Bucket Covers

- Safety centrifuge cups and rotors with O-Rings contain spills and prevent release of aerosols during centrifugation.
 - Check O-Rings and grease seals with vacuum grease.
 - Use an approved disinfectant to decontaminate rotors/buckets after use. Use mild detergents for cleaning.
 - Look for signs of corrosion. Metal fatigue will eventually cause any rotor to fail.
 - Always use rotor(s) specified by the manufacturer.
 - Ensure tubes are properly balanced in rotors.

Shielding for Radioactive Materials

 Plexiglass shielding for strong (energetic) beta emitters


P32

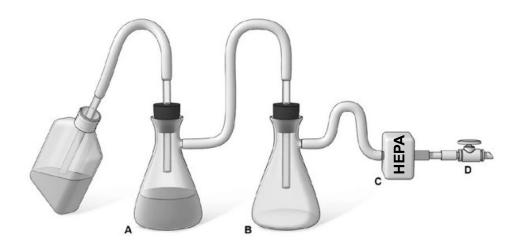
 Lead shielding for gamma emitters

Self-Shielded X-Ray Cabinets with Door Interlocks

- These cabinets are manufactured with shielding materials built into them.
- Door interlocks are also built in to prevent personnel from being exposed to x-rays. If the door is opened, the unit stops emitting x-rays.

Safety Needles

- Use self-sheathing needles and/or self-blunting needles,
 - Eliminate or minimize employee exposure
- Dispose of all sharps in leak-proof and puncture-resistant
 Sharps Disposal Containers.



Vacuum Systems

 If using with biological agents, the primary flask should contain sufficient volume of disinfectant (e.g. bleach) to decontaminate the final amount of liquid.

 An in-line HEPA filter must be used between the final flask and the vacuum source to protect the vacuum from contamination!

Protection of a house vacuum

Example method to protect a house vacuum system during aspiration of infectious fluids. The suction flask (A) is used to collect the contaminated fluids into a suitable decontamination solution; the right flask (B) serves as a fluid overflow collection vessel. An in-line HEPA filter (C) is used to protect the vacuum system (D) from aerosolized microorganisms.

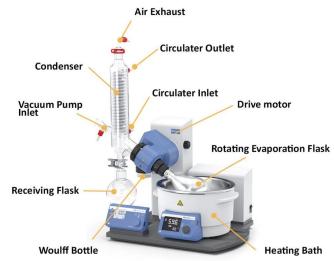
(Adapted image/text from Biosafety in Microbiological and Biomedical Laboratories (BMBL) 6th Edition)

Hot Plates and Stirring Devices

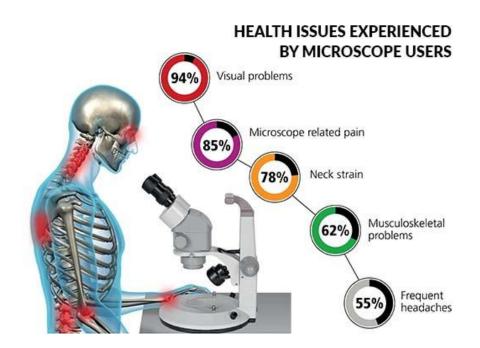
Hot Plates:

- Use in place of an open flame
- Do not operate near volatile or flammable materials
- Do not use with a metal vessel
- Must be used within a fume hood if potentially hazardous vapors will be generated

Stirring Devices:


- Operate in a biological safety cabinet whenever possible
- Use spark-free induction motors in power stirring and mixing devices

Stir plate



Rotary Evaporator

Ergonomics

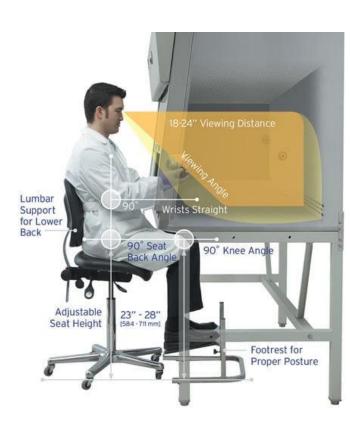
Microscopes

- Position microscope near the edge of the table
- Use a height adjustable chair
- Eyepiece should be at eye level

Ergonomics

Pipettes

- Maintain straight wrists. Do not twist or rotate your wrists while using the pipette.
- Keep elbow and body close to your work.
- Select the lightest pipette that can fit in your hand comfortably.
- Use multi-channel or electronic pipette to reduce repetitions.



https://vistalab.com/ergonomics-is-a-science-not-a-slogan/

Ergonomics

Biological Safety Cabinet

- Avoid repetitive movements whenever possible. Utilize ergonomic accessories.
- Keep head bent forward at 30° angle or lower.
- Rest elbows or forearms on elevated pads. Take care to not block front air grill or rest arms directly on work surface.
- Avoid clutter and reaching across the work zone. Work from "clean to dirty".
- Keep wrists in-line with forearms straight, non-locked position. Sit upright at 90° angle while working in the cabinet.
- Take frequent breaks with periodic stretching.
- Keep upper arms & shoulders relaxed whenever possible.

Summary

- Please complete the <u>Safety Awareness Quiz</u> on Engineering Controls by May 31, 2023.
- Please contact <u>ehs@slu.edu</u> for any questions.