Skip to main content
MenuSearch & Directory

Jenna Gorlewicz, Ph.D.

Associate Dean Research and Innovation; Associate Professor of Mechanical Engineering


Education

Ph.D. in Mechanical Engineering, Vanderbilt University
B.S. in Mechanical Engineering, Summa Cum Laude, Departmental Honors, Minors in Physics and Mathematics, Southern Illinois University, Edwardsville

Research Interests

Gorlewicz’s research interests include electromechanical design, modeling and control, haptic interfaces, human-machine interfaces, medical systems, image-guided surgery, medical devices and medical robots, educational haptic devices and robots, novel learning technologies, haptic touchscreens, engineering education, and entrepreneurship.

Labs and Facilities

The CHROME (Collaborative Haptics, Robotics, and Mechatronics) Lab is a laboratory in the Aerospace and Mechanical Engineering Department at Saint Louis University. The overarching mission of the CHROME Lab is to engineer for the benefit of society. The CHROME Lab is a place where engineers work collaboratively with professionals to create new technologies that make the world a better place. In the CHROME Lab, we make fundamental advancements in the areas of haptics and human-machine interfaces, but also translate our work out of our lab, such that it can make a difference beyond our walls. Graduate and undergraduate students work side by side with medical professionals, experts in education, start-ups, and industry partners to bring about a better tomorrow. Our research is centered on how we can promote effective human-machine interaction in numerous applications including education, medicine, and consumer technologies. We are particularly interested in the role of haptics (touch) in enhancing existing interaction capabilities and promoting entirely new levels that currently are not possible.

Click here for more information on the CHROME Lab

Publications and Media Placements

Selected Publications

J. L. Gorlewicz, L. B. Kratchman, and R. J. Webster III. Haptic paddle enhancements and a formal assessment of student learning in system dynamics. Advances in Engineering Education, 4(2):186-217, Fall 2014.

J. L. Gorlewicz, J. Burgner, T. J. Withrow, and R. J. Webster III. Initial experiences using vibratory touchscreens to display graphical math concepts to students with blindness. Journal of Special Education Technology, 29:2:17-25, 2014.

J. L. Gorlewicz, S. Battaglia, B. F. Smith, G. Ciuti, J. Gerding, A. Menciassi, K. L. Obstein, P. Valdastri, and R. J. Webster III. Wireless insufflation of the gastrointestinal tract. IEEE Transactions on Biomedical Engineering, 60(5), 1225-1233, 2013.

J. L. Gorlewicz, R. J. Webster III, and P. Valdastri. “Mesoscale Mobile Robots for Gastrointestinal Minimally Invasive Surgery (MIS).” Medical Robotics Minimally Invasive Surgery. Number 51. Woodhead Publishing Ltd., 2012.

J. L. Toennies, G. Tortora, M. Simi, P. Valdastri, and R. J. Webster III. Swallowable medical devices for diagnosis and surgery: The state of the art. Journal of Mechanical Engineering Science, 224(C7):1397-1414, 2010.

A. Danilchenko, R. Balachandran, J. L. Toennies, S. Baron, B. Munske, J. M. Fitzpatrick, T. J. Withrow, R. J. Webster III, and R. F. Labadie. Robotic mastoidectomy. Otology and Neurotology, 32(1):11-16, 2010.

S. Baron, H. Eilers, B. Munske, J. L. Toennies, R. Balachandran, R. F. Labadie, T. Ortmaier, and R. J. Webster III. Percutaneous inner-ear access via an image-guided industrial robot system. Journal of Engineering in Medicine, 224(5):633-649, 2010.

Honors and Awards

At Vanderbilt, Gorlewicz was a National Science Foundation Fellow and a Vanderbilt Educational Research fellow.